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RNDr. Jiřı́ Barnat, PhD for many pieces of helpful advice and fruitful discussions.

Also I thank all members of ParaDiSe laboratory at the Faculty of Informatics, Masaryk
University, for willingness to help me whenever problems with this work arose and the
people I met during may stay in Bamberg and had the pleasure to work with. In particular,
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Abstract

Model checking is a wide-spread technique for automated formal verification of software
and hardware systems. For a given formal description (finite-state model) of a system and
desired system property, the goal of the model checking procedure is to systematically an-
alyze a graph of all reachable configurations in order to decide whether the model satisfies
the property or not. The model checking techniques generally suffer from the so-called state
space explosion problem that causes the graphs to be very large for realistic systems. There-
fore, the performance of fundamental graph algorithms (breadth-first search, shortest path
detection, strongly connected component decomposition, accepting cycle detection, etc.) that
form building blocks of the model checking algorithms is crucial. However, sequential im-
plementations of these algorithms become impractical for extremely large graphs to be pro-
cessed. As a result, parallel graph algorithms have been devised to efficiently use computer
clusters and multi-core architectures. Even though the algorithmic shift to parallel process-
ing is possible, sequential code needs to be rewritten to take proper advantage of parallel
architectures. This especially applies to recently introduced massively parallel general pur-
pose graphics processing units (GPUs). These devices contain hundreds of arithmetic units
and can be harnessed to provide tremendous acceleration for many computation-intensive
scientific applications. The key to effective utilization of GPUs for scientific computing is the
design and implementation of efficient data-parallel algorithms that can scale to hundreds
of tightly coupled processing units.

In this thesis, we primarily focus on data-parallel graph algorithms for model check-
ing. However, our approach is more general and applicable to other graph algorithms. We
discuss and propose how to design efficient data-parallel algorithms for accepting cycle de-
tection, strongly connected component decomposition, optimal cycle detection and graph-
based resolution of boolean equation systems. In particular, we design basic data-parallel
graph primitives and show how the aforementioned algorithms can be built from them.

While the raw computing power of massively parallel GPU devices is tremendous, its ef-
fective utilization is, however, quite often reduced by the costly preparation of suitable data
structures and limited to small or middle-sized instances due to space restrictions. Hence, we
further suggest how to overcome these limitations using multi-core construction of the com-
pact data structures and employing multiple GPU devices for acceleration of fine-grained
communication-intensive parallel algorithms.

In order to evaluate the efficiency of the proposed techniques we experimentally demon-
strate the performance of the suggested data-parallel graph algorithms and compared them
with best sequential counterparts. Our experiments show that the proposed GPU acceler-
ation results in a significant speedup of the graph algorithms. Moreover, the experimental
evaluation positions our GPU accelerated DiVinE-CUDA tool (LTL model checker based
on our data-parallel algorithm for accepting cycle detection and on a novel multi-core con-
struction of the compact state space representation) as the fastest among the state-of-the-art
parallel LTL model checkers using an unbiased selection of model checking instances.
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Chapter 1

Introduction

Computer-aided technologies have become ubiquitous in most areas of our lives and have
been frequently applied to control areas where any failure or mistake may have fatal con-
sequences. Examples of such technologies are computer systems controlling aircrafts, high
speed trains, space stations, or critical industrial systems such as nuclear power plants or
electricity distribution networks. Consequences of failures of these systems can be illustrated
by a number of real accidents (the failure of the maiden flight of Ariane 5 in 1996, four NASA
Mars missions failing between 1997 and 2004, the US Northeast blackout in 2003, or the mal-
function of the autopilot of a Boeing 777 aircraft during a regular passenger flight in 2005).

Therefore there is a strong pressure on developing formal verification methods for au-
tomated discovery of errors in computer systems and/or for proving their correctness. This
is reflected in many basic research projects supported by various American and European
grant agencies, in the existence of research teams focusing on formal verification within
many leading companies and institutions (such as Microsoft, IBM, or NASA) as well as in
the emergence of various spin-off companies working in the area of automated verification
(e.g., Coverity, GrammaTech, or AbsInt). A successful application of formal verification to
industrial systems can be illustrated by Intel Core i7 processor execution engine validation,
where testing has been replaced by verification techniques [73].

Techniques of formal verification employed in the current verification tools, typically
include static analysis, model checking, and theorem proving. In this thesis we primarily
focus on model checking [6], a technique for automated formal verification of software and
hardware systems. For a given formal description (represented as a finite-state model) of a
system and desired system property (expressed as a formula of a temporal logic), the goal of
the model checking procedure is to decide whether the system satisfies the property or not
by systematically analyzing a graph of reachable system configurations.

Although model checking has been effectively employed in the design process of several
real industrial systems (e.g., model checking of complex avionics systems reported in [92]),
the model checking techniques generally suffer from the so-called state space explosion
problem. This causes that the gap between the complexity of systems built in practice and
the complexity of systems the current formal verification tools can handle is still quite wide.

The reason behind the gap is that the graphs to be analyzed tend to be very large for
realistic systems. As a result, sequential implementations of fundamental graph algorithms
(breadth-first search, shortest path detection, strongly connected component decomposition,
accepting cycle detection, etc.) that form the building blocks of the model checking proce-
dure become impractical for extremely large graphs to be processed.

A lot of research has aimed at developing methods that can reduce the size of the result-
ing graphs. The most successful techniques are the partial order reduction [98, 34], symbolic
representation [90], or restricting the exploration of the state space only to relevant traces us-
ing on-the-fly generation [104]. However, these methods are often limited to a specific class
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1. INTRODUCTION

of systems and they do not provide sufficient reduction in the size of the graph.
In the last decade a different approach to fight the state space explosion problem has

attracted the model checking community – scalable distributed computation of the funda-
mental graph algorithms using contemporary parallel hardware platforms that can improve
the performance of verification tools. Therefore, many techniques using distributed and par-
allel processing have been developed to deal with the computational complexity of model
checking procedure. The primary goal here is to extend the available memory to handle
larger verification problems. Nevertheless, generating and analyzing large state spaces calls
for acceleration using parallel algorithms in order to obtain the desired level of performance.
Hence new parallel graph algorithms have been designed [39, 35, 77, 78] and incorporated
into the model checking tools [16, 12, 28, 1].

These algorithms were designed assuming the parallelism as provided by multi-core
shared-memory or distributed-memory architectures. As such they are based on coarse-
grain parallelism mapping multiple independent task to individual cores. The aim is to
deliver higher performance by exploiting modestly parallel workloads. However, a related
architectural trend is the growing prominence of massively parallel, throughput-oriented
hardware architectures that arise from the assumption that they will be presented with fine-
grain workloads in which parallelism is abundant [59]. At the leading edge of this class
of massively parallel architectures there are the modern Graphics Processing Units (GPUs).
GPUs have emerged as a revolutionary technological opportunity due to their tremendous
massive parallelism, floating point capability, low cost, and ubiquitous presence in com-
modity computers. Many fundamental algorithms have been redesigned to exploit the per-
formance of this hardware. The reason is that programming massively parallel, throughput-
oriented processors requires much more emphasis on parallelism and scalability than in the
case of multi-core or sequential processors. The key to utilization of GPUs for scientific com-
puting is the design and implementation of efficient data-parallel algorithms that can scale
to hundreds of tightly coupled processing units.

NVIDIA’s CUDA technology [49] has started an avalanche of prototypes and research re-
sults demonstrating the application of massive parallelism in many scientific fields. Recently,
GPUs have been successfully used to accelerate many compute-intensive and high-perfor-
mance applications in different areas such as image processing, simulation and modeling of
biological systems, numerical calculations and many others. Also some fundamental com-
putational building blocks such as basic graph algorithms [62, 91], sorting [103, 83], and
sparse matrix-vector multiplication [43] were successfully adapted to massively parallel ar-
chitectures the modern GPUs offer.

In the field of model checking the application of massive fine-grain parallelism needs to
be considered as well in order to push the limits further towards industrial strength veri-
fication techniques, allowing to deal with larger state spaces and providing rapid feedback
to the developer. Therefore in this thesis, we aim at developing methods that allow to effi-
ciently employ massively parallel architectures in order to significantly speed up the model
checking techniques. In particular, we design fast data-parallel graph algorithms that form
the building blocks for our GPU accelerated model checking algorithms.

A successful utilization of modern GPUs in the context of model checking have been
recently demonstrated in [32, 33]. Authors have shown how to significantly accelerate the
computation of linear equation systems in order to speed up model checking of probabilistic
systems. Another application of massive parallelism closely related to our work has been
recently published in [54], where GPUs are used to accelerate state space generation.
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1. INTRODUCTION

1.1 Contribution of the Thesis

This thesis contributes to the area of designing fast data-parallel graph algorithms in the
context of model checking. It presents new methods and algorithms that enable to efficiently
utilize modern massively parallel architectures in order to significantly accelerate the model
checking process. The thesis is mainly based on our results recently published in several
journal, conference and workshop papers (see Sections 1.2 and 1.3 for more details). The
thesis provides a new common-ground presentation of our previously published results.
The contributions of this thesis are manyfold.

• We present new efficient data-parallel algorithms for accepting cycle detection, strong-
ly connected component decomposition, optimal cycle detection and graph-based res-
olution of boolean equation systems.

• We describe new techniques that allow to efficiently utilize the data-parallel algorithms
in the context of model checking. We present a new multi-core construction of the
compact data structures that overcomes their costly preparation. We also successfully
demonstrate how to employ multiple GPU devices for acceleration of fine-grained
communication-intensive parallel algorithms for LTL model checking that overcomes
the space limitation of the current GPUs.

• We present a new approach for designing fast data-parallel graph algorithms. We keep
the provably correct layout of the existing algorithms and redesign the algorithms to
enable vector processing. In particular, we reformulate the recursion present in the al-
gorithms by means of iterative procedures, design basic data-parallel graph primitives
and show how the aforementioned algorithms can be built from them. This approach
is more general and applicable to other graph algorithms. It aims at enabling imple-
mentation of algorithms on various vector models of computation and propounds a
way how could other graph algorithms be altered to benefit from massively parallel
architecture.

• We experimentally evaluate the performance of the designed data-parallel algorithms
and compare them with the best sequential counterparts. Our experiments demon-
strate that the proposed GPU accelerated algorithms significantly outperform the best
sequential counterparts and thus in total speed up the solution of the inspected graph
problems.

• We deliver the DiVinE-CUDA tool that implements the designed GPU accelerated al-
gorithms for LTL model checking and experimentally evaluate its performance. The ex-
perimental evaluation positions our DiVinE-CUDA tool as the fastest among the state-
of-the-art parallel LTL model checkers using an unbiased selection of model checking
instances.

1.2 Author’s Contribution

The overall contribution of the author to the research in computer science is summarized in
this section. Note that not all published results are mentioned in this thesis.
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Journal papers
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Model Checking of Markov Decision Processes. In Proceedings of 5th International
Workshop on Parallel and Distributed Methods in verifiCation (PDMC’06), pages 1–
15. University of Bonn, 2006. [Author’s contribution: 20%]

This thesis is mainly based on the results published in [10, 9, 7, 26, 8, 21, 20]. These results
arose during PhD research of the author of this thesis who also has the major contribution
to these publications. The contribution includes formulation of key ideas of the designed
algorithms and methods, significant part of implementation works, analysis of experimental
evaluations, formulation of conclusions and significant part of writing. However, the results
would not come into existence without advisor prof. L. Brim and consultant doc. J. Barnat
who initiated and motivated this research. Important contributions to these results have
been done by master’s students T. Lamr and P. Bauch who participated on the prototype
implementations of the designed methods and algorithms.

Other published results are based on the joint work by the authors of the publications
who equally contributed to these results. This work closely relates to the thesis since it
presents new parallel algorithms and methods for LTL model checking and for analysis
of probabilistic systems. The work also provided to the author of this thesis an important
background and motivation for the research in the area of the parallel formal verification.

1.3 Outline of the Thesis

This thesis is organized as follows:
Chapter 2 provides a background of this thesis. It presents key characteristics of modern

massively parallel Single Instruction Multiple Data (SIMD) architectures that form target
hardware platforms for proposed data-parallel algorithms. The chapter also introduces se-
lected graph algorithms and model checking techniques whose parallelization is studied in
the context of this thesis.

Chapter 3 describes a general work-flow of data-parallel graph algorithms. It introduces
suitable data representation and heterogeneous computation work-flow that are demon-
strated on GPU accelerated graph traversal. It also discusses the main limitations of the
parallelization and studies recently proposed methods that try to overcome these limita-
tions. Finally, it provides a simple model of data-parallel processing of graph algorithms
that enables to evaluate how efficiently can modern GPUs handle the proposed way of data-
parallel processing of graph algorithms. The model also justifies our motivation to accelerate
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the graph algorithms on massively parallel SIMD architectures. This chapter is partly based
on our work published in [10, 9, 21].

Chapter 4 presents data-parallel algorithms for accepting cycle detection, namely the
data-parallel versions of the MAXIMAL-ACCEPTING-PREDECESSOR and ONE-WAY-CATCH-
THEM-YOUNG algorithms. These algorithms provide building blocks for GPU accelerated
LTL model checking. This chapter summarizes our results published in [26, 20, 21].

Chapter 5 shows how to employ the proposed data-parallel algorithms for accepting
cycle detection in order to accelerate the LTL model checking process on modern many-core
GPUs. It describes an efficient transformation from implicit graph representation to a form
suitable for GPU computation and for overcoming of the GPU memory limitation. Finally,
it provides an experimental comparison of our GPU accelerated model checker with others
state-of-the-art tools. This chapter contains our results published in [10, 8, 20, 21].

Chapter 6 describes a design of data-parallel algorithms for strongly connected com-
ponent decomposition. It shows how to decompose the existing algorithms into primitive
data-parallel graph operations and how to reformulate the recursion present in these algo-
rithms by means of iterative procedures. It also describes a new data-parallel procedure for
pivot selection and provides an experimental evaluation of the proposed algorithms and
their comparison with optimal inherently sequential TARJAN’S algorithm. This chapter is
based on the results published in [9].

Chapter 7 presents a data-parallel algorithm for the optimal cycle mean problem, namely
data-parallel version of HOWARD’S algorithm. It evaluates all existing classes of algorithms
for this problem with respect to their predisposition for vector processing. It also provides an
experimental comparison with an optimal inherently sequential algorithm given by Young
Tarjan and Orlin in the context of performance verification based on the optimal cycle mean
detection. This chapter is based on the results published in [7].

Chapter 8 studies parallel resolution of Boolean Equations Systems (BESs) in the context
of model checking of alternation-free µ-calculus. It describes a data-parallel fixpoint compu-
tation of the resolution of BESs and provides an experimental evaluation of both multi-core
and many-core implementations and their comparison with optimal algorithm based on the
chasing one technique. This chapter summarizes the unpublished result that has been done
in cooperation with A. Ditter and prof. G. Lüttgen and that is submitted for publication.

Chapter 9 concludes the thesis and discusses the future work in this area.
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Chapter 2

Background

In this chapter, we first briefly discuss the key characteristics of modern massively parallel
architectures that form the target architectures for proposed data-parallel graph algorithms.
Afterwards we provide the necessary definition from graph theory and introduce selected
graph algorithms. Finally, we shortly present and motivate the model checking problem and
the problem of performance verification and describe specific approaches for these problems
based on the introduced graph algorithms.

2.1 Massively Parallel Architectures

The potential of Single Instruction Multiple Data (SIMD) parallelism (first efficiently em-
ployed in the Connection Machines [65]) was recently rediscovered with the entry of af-
fordable massively parallel Graphics Processing Units (GPUs). The modern GPUs provide
off-the-shelf data-parallel computation capability which has been soon utilized by the aca-
demic community and has led to acceleration of various scientific computations, concisely
reported for example in the GPU gems series [57, 99, 94].

The modern GPUs represent a successful example of the massively parallel architectures
where a massive number of relatively simple in-order processors perform a sequence of in-
struction on many data elements. The overall approach to parallelism is considerably distinct
from the one assumed by CPU computation. While in shared memory parallelism are com-
plex out-of-order processors potentially communicating via the shared memory it is not the
case in SIMD computation.

The Compute Unified Device Architecture (CUDA) [49], developed by NVIDIA, fur-
ther improves the SIMD approach by establishing a hierarchy of threads prior to the actual
computation. Within this hierarchy, threads are arranged in blocks. The threads are hard-
wired into groups of 32 called warps that form a basic scheduling unit. All threads within
a block may communicate via the shared memory and also an efficient barrier synchroniza-
tion (syncthreads) is limited to the given block. The aforementioned improvement on the
SIMD approach lies in its evolution into single instruction multiple thread (SIMT) approach.
Since to every warp a thread scheduler is assigned (or two for the latest generations of de-
vices), allowing the threads in other warps to perform another sequence of instructions, thus
effectively improving the robustness of the previously much more restricted applicability
of data-parallelism. Furthermore, if a sufficient number of threads is dispatched, the thread
scheduler can issue execution of another warp, while the current warp is accessing the global
memory to hide the extensive latency of this operation. Figure 2.1 illustrates the GeForce ar-
chitecture which is one of the-state-of-the-art generation of the CUDA architecture.

The other aspect of the CUDA architecture is its software side, i.e. the modification of the
C programming language, the nvcc compiler for device code, the CUDA debugger, etc. As
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Figure 2.1: Nvidia GeForce graphics processor architecture. The particular GeForce GTX 480
has 15 streaming multiprocessors (SM) each containing 32 streaming processors (SP) and 8
special function units (SFU). Hence, it provides 480 computing cores. Each SP can perform
one single precision operation per cycle and each SFU can fulfill four SF operations per
cycle, summing up the theoretical peak performance to approximately 1345 GFLOPs. The
card possesses 1.5 GB of global memory. Each SM has 64 KB of on-chip memory that can be
configured as 48 KB of shared memory with 16 KB of L1 cache or as 16 KB of shared memory
with 48 KB of L1 cache and 768 KB of L2 cache.

far as the modification of C is concerned it is to be seen as both an extension and restriction.
The language is extended with the option to specify what parts of code are going to be
executed on the GPU (called kernel functions) and for specification of the thread hierarchy
to be applied. The restriction lies mainly in the kernels, where only declaration of variables;
arithmetical, logical and bitwise operations and the branching and iteration operations can
be applied.

2.2 Graphs and Selected Graph Algorithms

A directed graph G is a pair (V,E), where V is a set of vertices, and E ⊆ V × V is a set
of directed edges. If (u, v) ∈ E, then v is called immediate successor of u, and u is called
immediate predecessor of v. The in-degree and out-degree of a vertex v is the number of
immediate predecessors and successors of v, respectively. Given a graph G, we use n and m
to denote the number of vertices and edges in G, respectively. GT = (V,ET ), the transposed
graph of G = (V,E), is the graph G with all edges reversed, i.e., ET = {(u, v) | (v, u) ∈ E}.
A subgraph of a directed graph G = (V,E) given by a set of vertices V ′ ⊆ V is a directed
graph G′ = (V ′, E ∩ (V ′ × V ′)).
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(b) The component graph of G.

Figure 2.2: Example of strongly connected component decomposition.

Let G = (V,E) be a directed graph. A path in G is a non-empty sequence of edges
π =< e1, . . . , en > such that ∀1 ≤ i ≤ n : ei = (vi−1, vi) ∈ E. The length of path π is denoted
as |π| and for π =< e1, . . . , en > equals to n. A path for which v0 = vn is called a cycle. The
set of all cycles of graph G is denoted with ZG. We say that a vertex t ∈ V is reachable from
a vertex s ∈ V if there is a path from s to t or s = t. A graph is rooted if there is an vertex
s0 ∈ V such that all vertices in V are reachable from s0.

For v ∈ W ⊆ V , the forward closure of v in W is the set of reachable states from v in the
subgraph of G given by W . If W is not specified, W = V . The forward closure of S ⊆ W

in W is the union of forward closures in W over all vertices from S. Finally, the backward
closure is defined as the forward closure in the graph GT .

2.2.1 Strongly Connected Component Decomposition

A set of vertices C ⊆ V is strongly connected, if for any two vertices u, v ∈ C, we have
that v is reachable from u. A strongly connected component (SCC) is a maximal strongly
connected set C ⊆ V , i.e. such that no C ′ with C ( C ′ ⊆ V is strongly connected. A maximal
strongly connected componentC is trivial ifC is made of a single vertex c and (c, c) /∈ E, and
is non-trivial otherwise. Furthermore, C is called leading or terminal if (V ×C) ∩ E = ∅ or
(C × V ) ∩ E = ∅, respectively. We say that a subgraph G′ = (V ′, E′) of G respects strongly
connected components of G (is SCC-closed ) if for every strongly connected component C
of G we have C ∩ V ′ 6= ∅ =⇒ C ⊆ V ′. Graph Gc = (Vc, Ec) is a component graph of
G if Vc is the set of all strongly connected components of G and e = (G1, G2) is in Ec ⊆
Vc × Vc if there is an edge in G between a vertex from G1 and a vertex from G2. In Figure 2.2
there is an example of a graph decomposed into its strongly connected components and the
corresponding component graph.

To decompose a graph into SCCs means to classify vertices of the graph according to the
strongly connected component they belong to. The standard sequential algorithmic solution
to the problem is due to Tarjan [105] who gave an optimal O(n + m) depth-first traversal
procedure (further referred as TARJAN’S algorithm) to output the list of all SCCs for a given
directed graph. An annotated pseudo-code for TARJAN’S algorithm is listed as Algorithm 1.
A key idea of the algorithm is a detection of a root vertex for each SCC. The root vertex is
the first vertex of the SCC that is visited during the depth-first search traversal. Once re-
cursive calls on root’s successors has finished, all vertices on the stack from root upwards
form an SCC. In order to identify the root nodes the algorithm uses a depth-search index
that numbers the nodes consecutively in the depth-first search order in which they are dis-
covered. The algorithm for each vertex v also keeps a value lowlink, that is equal to the
smallest index among vertices reachable from v. Therefore v is the root of an SCC if and only
if v.lowlink = v.index.
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Algorithm 1: CPU TARJAN’S Algorithm

Input : directed graph G = (V, E)
Output: strongly connected component decomposition of G

1 index← 0
2 stack← emptyStack
3 foreach v ∈ V do
4 if v.index = ⊥ then // v has not yet been visited
5 DECOMPOSE(v)

procedure DECOMPOSE(v)
6 v.index← index
7 v.lowlink ← index
8 index← index + 1
9 stack.push(v)

10 foreach u ∈ succ(v) do // for each immediate successor of v

11 if u.index = ⊥ then // u has not yet been visited
12 DECOMPOSE(u)
13 v.lowlink ← min{v.lowlink, u.lowlink}
14 else if u ∈ stack then // u is in the stack and thus in the current SCC
15 v.lowlink ← min{v.lowlink, u.index}

16 if v.lowlink = v.index then // v is a root vertex of an SCC
17 start a new SCC
18 repeat
19 w ← S.pop()
20 add w to the current SCC

until w = v

2.2.2 Accepting Cycle Detection

A directed graph with accepting vertices GA is a triple (V,E,A), where a set A ⊆ V specifies
the accepting vertices. We say that a graph GA contains an accepting cycle if there exists an
accepting vertex a ∈ A such that there is a path from a to a (i.e. there is a cycle containing the
vertex a). Accepting cycle detection is a problem of deciding whether a graph GA contains
an accepting cycle reachable from a given vertex v0 ∈ V . The standard and optimal sequen-
tial algorithm for the accepting cycle detection is based on Nested Depth-First Search [48]
(further referred as the NDFS algorithm) that runs in O(v + m) time. The NDFS algorithm
(listed as Algorithm 2) employes two procedures based on depth-first search graph traversal.
The DFSBLUE procedure which forms the main loop of the algorithm, allows for marking
each newly visited state as blue. The DFSRED procedure tries to find a path back to a given
accepting vertex v and marks all visited as red. It is sufficient to find a path to a vertex v′

that is on DFSBLUE stack (line 14) since the path from v′ to v is guaranteed. If the DFSRED

procedure detects that some accepting state is reachable from itself, the algorithm reports the
existence of an accepting cycle, otherwise the graph does not contain any accepting cycle.
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Algorithm 2: CPU NDFS algorithm

Input : directed graph G = (V, E, v0, A) of AS×¬ϕ

Output:
{

true if AS×¬ϕ contains accepting cycle
false otherwise

1 foreach v ∈ V do
2 v.blue← false
3 v.red← false

4 DFSBLUE(v0)
5 return false

procedure DFSBLUE(v)
6 v.blue← true
7 foreach u ∈ succ(v) do
8 if u.blue = false then
9 DFSBLUE(u)

10 if v ∈ (A) then
11 DFSRED(v)

procedure DFSRED(v)
12 v.red← true
13 foreach u ∈ succ(v) do
14 if u is on DFSBLUE stack then
15 return true

16 else if u.red = false then
17 DFSRED(u)

2.2.3 Optimal Cycle Mean Problem

Let G = (V,E) be a graph. A weight function is a function w : E → R that assigns a
real weight to every edge of G. We speak of weighted graph if G and w are given. Weight
function naturally extends to paths as a sum of the weights of all the edges on the path,

i.e. w(π)
df
=
∑n

i=1w(ei), where π =< e1, . . . , en >. Let π be a cycle in a graph G weighted

with a weight function w. We define cycle mean of cycle π as µ(π)
df
= w(π)

|π| . Minimal cy-
cle mean for a given graph G and weight function w is then denoted with µ∗(G,w), where
µ∗(G,w) = min{µ(π) | π ∈ ZG}. Henceforward, we will safely drop the graph and weight
function from the notation of minimal cycle mean and will refer to minimal cycle mean sim-
ply as to optimal cycle mean that will be denoted by µ∗. OCM problem is for a given graph
G and weight function w to find the minimal cycle mean. Many different approaches to com-
pute OCM have been studied. For example Dasdan et al. [51] gave a comprehensive list of
algorithms. From practical point of view the most efficient sequential algorithmic solution to
OCM problem is given by Young, Tarjan and Orlin [112] (further referred as the YTO algo-
rithm) that runs inO(nm+n2 log n) time. We describe different approaches to OCM problem
in Section 7.1.
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2.3 Model Checking

In the last several years computer systems have been frequently applied to control areas
where any failure or mistake may have fatal consequences. Examples of such systems can
be air traffic control systems, medical instruments, banking applications, and many others.
In these cases the traditional techniques of verification such as simulation or testing [93] are
insufficient because they do not discover all errors, and thus, they can not guarantee that
the system is correct. Therefore, the techniques of formal verification, i.e. formal methods
proving or disproving the correctness of the system, are widely studied.

Model checking [6] is a wide-spread technique for automated formal verification of soft-
ware and hardware systems. For a given formal description of a system represented as a
finite-state model and inspected system property, the goal of the model checking procedure
is to decide whether the model satisfies the property or not. There exist several approaches
to model checking. They differ in specification of the system and the system property. In this
thesis, we focus on two specific approaches, namely LTL model checking [109] and model
checking of the alternation-free µ-calculus [76] using boolean equation systems [86].

2.3.1 LTL Model Checking

For LTL model checking purposes, the system to be analyzed has to be described in some
modeling language, ProMeLa [67] for example, and the property to be checked has to be
given as a formula of Linear Temporal Logic (LTL) [6]. To answer the LTL model checking
question, tools, such as SPIN [67], DiVinE [16], or LTSmin [79], employ automata-theoretic
approach to reduce the model checking problem to the problem of non-emptiness of Büchi
automata [108]. In particular, the model of a system S is viewed as a finite automaton AS
describing all possible behaviors of the system. The property to be checked (LTL formula ϕ)
is negated and translated into a Büchi automaton A¬ϕ describing all behaviors violating ϕ.
In order to check whether the system violates ϕ, a synchronous product AS ×A¬ϕ of AS and
A¬ϕ is constructed describing those behaviors of the system that violate ϕ, i.e.L(AS×A¬ϕ) =
L(As) ∩ L(A¬ϕ). The automata AS , A¬ϕ, and AS × A¬ϕ are referred to as system, property,
and product automata, respectively. The size of the product automaton is linear to the size
of the system and exponential to the size of the formula [108]. System S satisfies formula ϕ
if and only if the language of the product automaton is empty, which is if and only if there is
no reachable accepting cycle in the underlying digraph of the product automaton. The LTL
model checking problem is thus reduced to the problem of deciding existence of a reachable
accepting cycle in the product automaton graph.

2.3.2 Model Checking Using Boolean Equation Systems

A Boolean Equation Systems (BES) is a finite sequence of the least and the greatest fixpoint
equations, where each right-hand side of an equation is a proposition formula. Each equation
has the form σX = ϕ, where σ ∈ {µ, ν} is the least or the greatest fixpoint operator, left
hand side (LHS) X is a propositional variable and right hand side (RHS) ϕ is a proposition
formula of the from ϕ ::= > | ⊥ | X | ϕ ∧ ϕ | ϕ ∨ ϕ.

In the case of model checking of alternation-free µ-calculus (the inspected temporal prop-
erty is expressed by a formula in alternation-free µ-calculus [76]), BESs are the result of the
interpretation of a µ-formula over a labeled transition system (LTS) (see Figure 2.3 for the

20



2. BACKGROUND

Property - Deadlock freedom: νX.([−]X ∧ 〈−〉true)

LTSunsat

X1 X2 X3

Resulting BES

νX1 = X2 ∧ > = X2

νX2 = X1 ∧ X3 ∧ > = X2 ∧ X3

νX3 = > ∧ ⊥ = ⊥

LTSsat

X1 X2 X3

Resulting BES

νX1 = X2 ∧ > = X2

νX2 = X1 ∧ X3 ∧ > = X2 ∧ X3

νX3 = X1 ∧ > = X1

Figure 2.3: Interpretation of µ-formula over LTSs.

illustration). As the formula has to be verified in every state of the LTS the resulting BES is of
size |LTS| x |ϕ|k, i.e., the size of the BES is proportional to the size of the LTS and exponential
in the complexity of the µ-formula, where k is the number of nested fixpoint operators [86].
Each fixpoint operator of the formula is represented by a so-called block in the resulting
BES, containing the set of equations connected to this operator.

While equations may be reordered arbitrarily within a block, this is not the case for the
ordering in which the blocks are solved as it might lead to the computation of a wrong
fixpoint. The order in which blocks have to be processed is defined by their nesting within
the µ-formula.

The solution of BESs can be computed in various ways, using methods such as Gaussian
Elimination [86], chasing ones [3], or simply a fixpoint iteration – see [75] for a comprehen-
sive summary on the topic.

2.4 Performance Verification Using Optimal Cycle Mean

High quality implementation of complex computer systems, e.g. complex embedded sys-
tems, is a major challenge today and the computer industry struggles with how to efficiently
engineer these systems. Implementations of these systems raise complex parallelism and
scheduling issues, which are in practice solved by hand or, at best, by using emerging tools
that address only a limited set of applications with favorable properties, such as static nests
of loops. One way to tackle this challenge is to use model-driven engineering.

Model-driven engineering is a very active academic domain, driving many studies and
prototype tools. Model-driven performance analysis introduces performance analysis in the
early design phases leading to design of more reliable and optimal system.

An inspection of graph cycles is one of the possible means to deal with performance
prediction. For example assume that the actions of the system are modeled by transitions
labeled with resource consumption. Then by finding the maximal cycle mean of a graph
representing the system it is possible to approximate the worst sustainable load—the amount
of resources consumed—under which the system will operate.

Analogously, the inspection of properties of critical cycles, and especially the computa-
tion of optimal cycle mean (OCM), allows to analyze performance of a large number of sys-
tems. It has been shown that the system to be analyzed can be modeled as a Petri net [100],
Process graph [88] or e.g. a Data flow graph [71]. When an appropriate modeling formalism
for the given real-world system is used, the enumeration of a specific cycle property facil-
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itates performance evaluation of asynchronous systems [37], delay intensive and latency-
insensitive systems [85]; rate analysis and scheduling of embedded real-time systems [88];
time-separation analysis of concurrent systems [38] and many others.
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Chapter 3

Data-Parallel Graph Algorithms

This chapter provides basic ideas behind designing data-parallel graph algorithms. In par-
ticular, we present an efficient graph representation, describe a data-parallel algorithm for
graph traversal that introduces the basic concept that all the other presented data-parallel
algorithms build on and discuss limitations of the data-parallel algorithm. Finally, we in-
troduce a simple model of data-parallel graph algorithms that helps us to evaluate how
efficiently can modern GPUs handle suggested way of data-parallel processing.

3.1 Graph Representation

Data structures used for GPU accelerated computation must be designed with care. First,
they have to allow independent thread-local data processing so that the CUDA hardware
can employ massive parallelism. And second, they have to be small so that the high latency
device-memory access and limited device-memory bandwidth are not large performance
bottlenecks. In our case, it is the representation of the graph to be encoded appropriately in
the first place. Note that uncompressed matrix or dynamically linked adjacency list graph
representations violate these requirements, and as such they are inappropriate for GPU ac-
celerated computation.
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Figure 3.1: a) Matrix and adjacency list representation: a graph G = (V,E) (top) is stored
as matrix (left) and two arrays (right): Ai of size |V | + 1 and Ae of size |E|. b) Sequential
heterogeneous computation work-flow with CUDA.

To realize efficiently a CUDA-aware graph algorithm the graph needs to be represented
in a compact, preferably vector-like, fashion [82]. Compressed sparse row representation
of the adjacency matrix of the graph has proven to be an option for efficient CUDA graph
encoding [62]. This graph encoding uses two one-dimensional arrays Ai and Ae, to encode
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3. DATA-PARALLEL GRAPH ALGORITHMS

Algorithm 3: CPU FORWARDREACHABILITY procedure

Input : directed graph G = (V, E) and set of vertices S
Output: set of vertices R = {v ∈ V | ∃s ∈ S : (s, v) ∈ E+}

1 R← ∅
2 while S 6= ∅ do
3 pick and remove s from S

4 foreach v such that (s, v) ∈ E do
5 if v /∈ R then
6 S ← S ∪ {v}
7 R← R ∪ {v}

8 return R

a directed graph as depicted in Figure 3.1a. For a vertex vj array Ai keeps the sum of the
number of edges emanating from vertices v0 to vj . The number of edges emanating from a
vertex vj can be computed asAi[j]−Ai[j−1]. The idea of this encoding is such that the value
ofAi[j] serves as an index to the second arrayAe. ArrayAe is a concatenation of ordered lists
of target vertices of edges emanating from individual graph vertices. Sizes of arrays Ai and
Ae correspond to the sizes of sets of vertices and edges of the graph, respectively. If other
data associated to a vertex are needed by a CUDA kernel algorithm, then they are organized
in vectors as well. Since the device memory is limited we try to store other bits of information
into unused pointer bits (the values of Ai are technically pointers) reducing thus the space
needed to record all the data for one vertex. The efficient representation of other data will be
further described together with individual algorithms.

3.2 Parallelization of Graph Traversal

One of the most fundamental graph primitives is graph traversal procedure (further referred
as the FORWARDREACHABILITY procedure), see Algorithm 3 for CPU pseudo-code. Having
properly encoded the graph the standard CUDA accelerated FORWARDREACHABILITY pro-
cedure is given as Algorithm 4. The general work-flow of the algorithm is the combination
of out-of-order CPU and data-parallel processing GPU that allows for heterogeneous com-
putation as illustrated in Figure 3.1b, where sequential host code and parallel device code
are executed in turns. The CPU runs the main loop of the algorithm and performs calls to
CUDA kernels that run on the GPU (the CUDA kernel for the FORWARDREACHABILITY pro-
cedure is listed as Algorithm 5). In the case of graph algorithms CUDA processing allows
for very fine granularity of parallelism [62]. In particular, a dedicated thread is executed for
every vertex of the graph (each item of Array Ai). This general work-flow is shared among
all other graph procedures presented in this thesis.

To perform the graph reachability procedure two additional data structures are required
to keep the track of vertices being reached and vertices being reached but not yet expanded.
To that end the CUDA kernel employs two vertex labels: reached and expanded, respec-
tively. Each single call to the CUDA kernel then explores edges emanating from reached
but not expanded vertices and updates vertex labels accordingly. The CUDA kernel is in-
voked repeatedly as long as vertex labels change. Note that in order to reduce the space
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Algorithm 4: GPU FORWARDREACHABILITY procedure – host code

Input : directed graph G = (V, E, S)
Output: set of vertices R = {v ∈ V | ∃s ∈ S : (s, v) ∈ E+}

1 CREATEREPRESENTATION(G, Ae, Ai, F lags)
2 fixPointFound← false
3 COPYTOGPU((Ae, Ai, F lags)→ (gAe, gAi, gF lags))
4 while ¬fixPointFound do
5 fixPointFound← true
6 FORWARDREACHABILITYKERNEL(gAe, gAi, gF lags, fixPointFound)

7 COPYTOCPU(gF lags→ Flags)
8 R← {v ∈ V | Flags[v].reached = true}
9 return R

Algorithm 5: GPU FORWARDREACHABILITY kernel – device code (run in parallel ∀v ∈ V )

Input : gAe, gAi, gF lags, fixPointFound

1 tid← blockId.x ∗ blockDim.x+ threadId.x // tid ≡ v
2 myVertex← gF lags[v]
3 if myVertex.expanded ∨ ¬myVertex.reached then
4 return

5 first← gAi[v]
6 last← gAi[v + 1]
7 foreach index ∈ first, . . . , last do
8 targetVertex← gAe[index]
9 mySucc← gF lags[targetVertex]

10 if mySucc.reached then
11 continue

12 mySucc.reached← true
13 gF lags[targetVertex]← mySucc
14 fixPointFound← false

15 myVertex.expanded← true
16 gF lags[v]← myVertex

complexity of the FORWARDREACHABILITY procedure these two labels associated with each
vertex v can be stored into two unused pointer bits of gAi[v]. Afterwards all operations
on gF lags[targetV ertex] can be replaced by bit manipulation on gAi[targetV ertex] making
thus Array gF lags redundant.

3.2.1 Backward Graph Traversal

There are two options to perform the backward graph traversal (further referred as the
BACKWARDREACHABILITY procedure). Either we can compute the representation of the
transposed graph and employ the FORWARDREACHABILITY kernel, or we can devise a sep-
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Algorithm 6: GPU BACKWARDREACHABILITY kernel – device code (run in parallel ∀v ∈ V )

Input : gAe, gAi, gF lags, fixPointFound

1 tid← blockId.x ∗ blockDim.x+ threadId.x // tid ≡ v
2 myVertex← gF lags[v]
3 if myVertex.reached then
4 return

5 first← gAi[v]
6 last← gAi[v + 1]
7 foreach index ∈ first, . . . , last do
8 targetVertex← gAe[index]
9 mySucc← gF lags[targetVertex]

10 if mySucc.reached then
11 myVertex.reached← true
12 fixPointFound← false
13 break

14 gF lags[v]← myVertex

arate kernel in which each thread checks the presence bits of immediate successors of its
vertex and then if some of them are in the closure set, it sets the presence bit for its own ver-
tex. While obviously the latter solution is more space efficient, our experiments have shown
almost exclusive performance dominance of the first solution. For the difference between the
approaches, see pseudo-codes as listed in Algorithms 5 and 6. Note that, in the case of the
backward graph traversal the algorithm needs to keep only the label reached.

3.3 Limitations of Data-Parallel Graph Algorithms

A common drawback of most CUDA kernels for graph procedures is that many threads
read some data from memory, but after evaluating them they do not write any data back.
For example, in the case of the reachability procedures each thread accesses the vector of
presence bits and if it reads zero for its corresponding vertex, it terminates without making
any update to the vector. As a result, the CUDA hardware has to perform a lot of useless
and expensive memory read operations. A possible solution [63] to the problem is to reor-
ganize threads so that only those threads are deployed that actually do some update to the
memory. However, this preprocessing is quite an expensive procedure and does not lead to
a consistent speedup. Therefore, we have devised a different solution to the problem. We
maintain an additional vector of d|V |/32e elements where we keep an information which
warps (32 consecutive threads) will perform an update to the memory in the succeeding it-
eration. Namely, if all vertices processed within a single warp are not part of the closure set
(all have the presence bit set to zero) no update to memory will occur due to this warp. By
employing special broadcast operation available in CUDA we can thus replace (potentially
up to) two 128-byte and one 64-byte data transactions with a single 32-byte memory read
operation followed by the broadcast to all threads in the warp. According to our experi-
ments this approach led to an observable speedup in many cases while introducing minimal
slowdown in the other ones.
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The very fine granularity of parallelism may naturally lead to uneven work-load distri-
bution and performance degradation if the out-degree (number of edges emanating from
a vertex) vary significantly among vertices of the graph. A solution to the problem of ir-
regular graphs have been recently proposed, discussed and evaluated in [69] where rather
than threads, warps are mapped to vertices. The authors present a virtual warp-centric pro-
gramming method based on warp-wise task allocation. This method enables to make the
necessary trade-off between SIMD underutilization caused by the warp-wise task allocation
and work load imbalance. It significantly boosts the performance on the highly irregular
graphs. Since the method is more general it can be also applicable to other graph algorithms.
Hence it has a potential to further improve the performance of data-parallel algorithms that
are designed in this thesis.

The out-degree of vertices and its variability deeply depend on application domain. For
example according to our experience the out-degree of vertices in model checking graphs
tend to have minor variations only, so the work load imbalance is not an issue. However,
even if the out-degree does not vary much there is still strong correlation among the av-
erage out-degree of a vertex and the overall performance of a general data-parallel CUDA
accelerated graph algorithm. This is because the reachability procedure performs in linear
time with respect to the diameter of the graph. The diameter tends to grow for a fixed-size
graph as the average out-degree of a vertex decreases. We should emphasize that the diam-
eter of the graph determines how many times the CUDA kernel must be called in order to
achieve the fixpoint in the computation. Therefore the described parallelization performs in
the worst case a quadratic amount of work (it inspects every edge or, at a minimum, every
vertex during every kernel call). Note that this problem is not only relevant to the reachabil-
ity procedure, but applies to all other graph procedures presented later on in this thesis.

Although the aforementioned methods (the reduction of useless memory operations and
the warp-based mapping) also reduce the amount of work in every kernel call (not all edges
and vertices are fully inspected), a quadratic parallelization can be very inefficient on graphs
with high diameter as it has been recently shown in [91]. The authors have designed a linear
parallelization of breadth-first search (BFS). They focused on fine-grained task management
that achieves an asymptotically optimalO(m+n) work complexity. To realize this complex-
ity each iteration should examine only the vertices that were first visited in the previous
iteration (a vertex-frontier). For each iteration, tasks are mapped to unexplored vertices in
the input queue maintaining the vertex-frontier. Their neighbors are inspected and the un-
visited ones are placed into the output queue. In the proposed parallelization the neighbors
are expanded in parallel and the local prefix sum [42] is used to compute enqueue offsets
where each thread should start writing its output vertices. This approach can drastically
improve the performance of the graph traversal for high diameter graphs. Moreover, it can
also lead to an observable speedup for low diameter graphs. Therefore, this parallelization
can significantly boost the performance of algorithms that heavily utilize the graph traversal
procedure. However, the applicability to more complicated graph algorithm is questionable
and will require further research. We should also remark that it has significantly higher space
complexity compared to the quadratic parallelization which can be limiting factor for many
application such as model checking.

Other important aspect of the GPU accelerated computation is a limited device-memory.
The general work-flow as presented in the previous section requires to copy the complete
representation of the graph to the GPU device memory. This step of the algorithm limits
the applicability of the approach to those problems whose compact graph representation
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fits the memory of GPU. Provided the graph representation fits, the transfer costs have only
a negligible impact on the overall performance as the graph representation and other data
structures are copied only once at the beginning (and possibly second time at the end) of
computation. Calls to individual CUDA kernels require transfer of small amount of infor-
mation only, such as a bit indicating whether a fixpoint has been reached. In the case that
the graph representation is too large to fit the GPU memory, multiple GPU devices might
be used. In that case the transfer costs are more significant as the computation on two or
more GPU devices demands data synchronization among those devices. For more details on
multi-GPU acceleration see Section 5.2 of this paper. The multi-GPU acceleration of graph
traversal based on a similar idea have been also described in [91].

3.4 Simple Model for CUDA Accelerated Graph Algorithms

To evaluate how efficiently can CUDA handle suggested way of data-parallel processing of
graph algorithms we design and implement a simple CUDA application mimicking the typi-
cal behavior of a data-parallel graph algorithm. The goal was to explore how different mem-
ory access patterns and work-load patterns affect the acceleration achieved by employing
many-core GPUs and to validate that the suggested approach is justified. The idea is based
on observation that our algorithms employ only a few primitive data-parallel graph opera-
tions such as the forward or the backward reachability. Since the graphs are stored as two
one-dimensional arrays we mimic the graph procedures by performing multiple iterations
of scanning or updating numbers in two vectors. This corresponds to the operation where
each vertex scans its immediate successors (predecessors) and updates its own value (the
read-many pattern), or the operation where the value associated with is spread among the
successors (predecessors) (the write-many pattern). Note that, the FORWARDREACHABILITY

procedure (Algorithm 5) illustrates the write-many pattern while the BACKWARDREACHA-
BILITY procedure (Algorithm 6) illustrates the read-many pattern. The computation of values
to be stored is trivial allowing thus the memory access pattern to have the most significant
impact on the overall performance.

A CUDA kernel of a graph algorithm typically access the graph representation in a two-
level nested way. The first level access goes to a vector position given by a thread id for
which the GPU is highly optimized (coalescence). This type of memory access pattern is also
suitable for sequential CPU computation as it has good space locality and can be efficiently
handled with CPU cache system. The second level access depends on the indices of the
individual successors (predecessors) that are scanned or updated and, therefore, it depends
on the structure of the graph. Note that we first create the compact array representation of the
graph, so we could partially alter its structure. However, very sophisticated changes would
imply a non-trivial time overhead during the computation of the representation that would
kill any benefit achieved. We are thus limited to only simple techniques that we described in
Section 5.1.

An important aspect of efficient CUDA computing is the impact of different memory
access patterns on the performance of the computation. We have therefore measured the
performance of the application if it is executed on CPU, GPU without the use of GPU shared
memory, and on GPU with the use of shared memory. Note that in most cases the data-
parallel graph operations do not allow to efficiently utilize the shared memory as without
quite expensive preprocessing the random structure of the graph breaks the data locality
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Figure 3.2: Evaluation of different memory access patterns and work-load patterns for the
model of general graph algorithms (1000 iterations, average outdegree 6, size of the graph
1 000 000) : a) Read-many patterns b) Write-many patterns.

with respect to the adjacent threads within the block running on a CUDA multiprocessor.
Even though the irregularity of out-degrees is not an issue in model checking graphs, we
have measured, for the sake of completeness, the impact of uneven work-load to threads by
setting randomly the number of loads/stores a thread executes.

The results (runtimes) of our measurements are plotted in Figure 3.2. Each column re-
ports on time needed to complete one thousand of operations in a given memory pattern
simulating a graph with a million vertices and average out-degree six. As for the CPU com-
putation, we can observe that the random memory access causes two-fold slowdown while
different work-load patterns do not have much effect. On the other hand, the varying mem-
ory access patterns and work-load patterns have a significant impact on performance of
the GPU computation. The random memory access leads to fourteen-fold slowdown in the
case of read-many pattern and to ten-fold slowdown in the case of write-many pattern com-
pared to regular memory access. The random work-load pattern is twelve times slower in
read-many pattern, but surprisingly only two times slower in write-many pattern. The com-
bination of random memory access and random work-load pattern brings no additional
slowdown for read-many pattern and additional five-fold slowdown in write-many pattern.
Finally, we can see that the use of GPU shared memory reduces the slowdown caused by
random memory access and random work-load pattern.

To sum it up, in the case of regular memory access pattern, the regular work-load pattern
and efficient utilization of shared memory, the GPU computation is about two orders of
magnitude faster than the sequential CPU computation on suggested graph representation.
Even in the case of irregular memory pattern and uneven work-load the GPU computation
is about thirty times faster, which clearly justifies our motivation to use massively parallel
GPU architecture to accelerate the graph algorithms.

3.5 Conclusion

In this chapter, we introduced the general work-flow of data-parallel graph algorithms. This
work-flow is shared among all other graph procedures presented in this thesis and allows
to design complex data-parallel graph algorithms that enables to efficiently utilize modern
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SIMD architectures. In particular, we showed how to encode the graph representation in or-
der to employ massive parallelism and we described the heterogeneous computation based
on the combination of out-of-order CPU and data-parallel processing GPU. We illustrated
the general work-flow on the CUDA accelerated graph traversal.

We also discussed the main limitation of data-parallel graph algorithms such as inappro-
priate memory access and work-load patterns caused by the structure of the given graphs,
non-optimal amount of work that has to be done for high diameter graphs, and memory lim-
itation. We also mentioned several methods that can reduce or overcome these limitations,
namely the reduction of memory read operations, the warp-centric programming [69], the
linear parallelization [91], and multiple GPU computation. Especially, the recently proposed
warp-centric approach and the linear parallelization have great potential to further signif-
icantly accelerate the data-parallel algorithms that we design in this thesis and thus they
open an interesting area of our future work.

Finally, we designed and implemented the simple model for CUDA accelerated graph
algorithms that mimics the typical behavior of the data-parallel algorithms. It allows us to
evaluate how efficiently can CUDA handle the suggested way of data-parallel processing of
graph algorithms. This evaluation clearly justifies our motivation to use massively parallel
GPU architecture to accelerate graph algorithms.
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Chapter 4

Data-Parallel Algorithms for Accepting Cycle Detection

In this chapter, we design data-parallel algorithms for the accepting cycle detection. These
algorithms provide the building blocks for GPU accelerated LTL model checking and thus
their performance is crucial. The standard and optimal sequential solution to the accepting
cycle detection is based on the NDFS algorithm that was described in Section 2.2.2. The
algorithm employes the depth-first search traversal that is inherently sequential and thus
unsuitable for SIMD acceleration. However, recently two versions of multi-core NDFS al-
gorithms have been introduced [55, 77]. They have a potential to scale beyond two threads
(the previous multi-core implementation of the NDFS algorithm can efficiently utilize only
two threads [68]) while maintaining the original time complexity. Moreover, the experiments
in [78] have shown that the combination of these algorithms can successfully compete with
other parallel algorithms that are not based on the depth-first search traversal. Although a
lot of research has been put into the parallelization of accepting cycle detection data-parallel
algorithms allowing for efficient utilization of SIMD architectures have not been considered
so far. We experimentally compare the performance of different approaches to parallelization
of accepting cycle detection in the context of LTL model checking in Section 5.5.

4.1 Parallel Algorithms for Accepting Cycle Detection

There exist several parallel algorithms for accepting cycle detection that are not based on the
depth-first search traversal. We focus on the MAXIMAL-ACCEPTING-PREDECESSOR (MAP)
algorithm [35] and the ONE-WAY-CATCH-THEM-YOUNG (OWCTY) algorithm [39] since the
previous research has shown that they have the best practical performance [12, 13, 22]. These
algorithms were designed assuming parallelism provided by shared-memory multi-core or
distributed-memory architectures, hence, they need to be revised to benefit from SIMD par-
allelism the modern GPUs offer.

4.1.1 MAXIMAL-ACCEPTING-PREDECESSOR Algorithm

Let G = (V,E, v0,A) be the graph of the product automaton where V is the finite set of
vertices, E is the set of edges (E+ its transitive closure), v0 is the initial vertex, and A is the
vertex predicate indicating whether a state is accepting or not. Let < be a linear ordering of
the set of vertices, given e.g. by the vertex numbering. We extend the ordering < to the set
V ∪ {⊥} (⊥/∈ V ) by requesting that for all v ∈ V we have ⊥< v. Furthermore, let map : V →
V ∪ {⊥} be a function returning the maximal accepting successor of a given vertex or ⊥ if it
does not exist, i.e. map(u) = max{⊥, v | (u, v) ∈ E+ ∧ A(v)}.

The idea of the MAP algorithm for detection of an accepting cycle is as follows. If an
accepting vertex u is its own maximal accepting successor, i.e. u = map(u), the presence
of an accepting cycle is guaranteed. If there are accepting cycles in the graph, but for none
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Algorithm 7: CPU MAP algorithm

Input : directed graph G = (V, E, v0, A) of AS×¬ϕ,
linear ordering < on V

Output:
{

true AS×¬ϕ contains accepting cycle
false otherwise

1 while ∃v ∈ V : A(v) do
2 map← COMPUTEALLMAPS(G,<)
3 foreach u ∈ V do
4 if u = map(u) then
5 return true

6 else
7 A(map(u))← false

8 return false

Algorithm 8: CPU COMPUTEALLMAPS procedure

Input : directed graph G = (V, E, v0, A) of AS×¬ϕ,
linear ordering < on V

Output: map function

1 foreach u ∈ V do map(u)←⊥ // also prevMap 6= map

2 while map 6= prevMap do
3 prevMap← map

4 foreach (u, v) ∈ E do
5 map(u)← maxacc(u, v)

6 return map

of the accepting vertices u = map(u), then the maximal accepting successors as computed
for vertices on accepting cycles must always lie outside a cycle. An accepting vertex lying
outside a cycle can be safely marked as non-accepting as it cannot be the reason for the exis-
tence of an accepting cycle. The idea of the iterative algorithm is to process the graph so that
each iteration computes map values for all vertices. If no accepting cycle is discovered, all
maximal accepting successors that occur in map(u) for some u are marked as non-accepting
for the rest of computation. The algorithm iterates until an accepting cycle is found or the
set of accepting vertices becomes empty. For details see the pseudo-code in Algorithm 7. The
proof of the correctness can be found in [35].

A key procedure of the algorithm is COMPUTEALLMAPS (called a propagation) that is
responsible for computing the values of the function map for all the vertices reachable from
the initial vertex (see the pseudo-code in Algorithm 8). Initially, the values of map(u) are
set to ⊥ for all u ∈ V . These values are then repeatedly updated until a global fixpoint is
reached, i.e. no update can be done for any value of map(u). Suppose a directed edge (u, v)
from u to v, the new value ofmap(u), the so-called update along the edge (u, v), is computed
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using function maxacc(u, v) as follows:

maxacc(u, v) =
{

max{map(u),map(v), v} if A(v)
max{map(u),map(v)} otherwise.

Henceforward, we also refer to the iterations of the while loop of the MAP algorithm
given in Algorithm 7 as outer iterations, and the iterations of the while loop of the COM-
PUTEALLMAPS procedure given in Algorithm 8 as inner iterations. The time complexity of
the MAP algorithm is O(|V |2 · (|V | + |E|)) [35] since in the worst case the algorithm per-
forms |V | outer iterations and each outer iteration takes |V | · (|V | + |E|) time (at most |V |
propagations has to be done in the COMPUTEALLMAPS procedure). The ordering of the set
of vertices has a significant impact on the practical performance of the algorithm [35]. To ob-
tain an optimal ordering (ensuring O(|V |+ |E|) time complexity of the algorithm) is at least
as hard as to detect the presence of an accepting cycle in the graph, therefore, only simple
ordering heuristics are applied [35].

The practical performance of the basic algorithm may be further improved if the graph to
be checked for the presence of an accepting cycle is partitioned into subgraphs so that no cy-
cle of the original graph maps to multiple partitions. In that case the inner iterations may be
prevented from propagating values of map along edges that cross partition boundaries. This
brings no complexity improvement, but it generally reduces the number of inner iterations
needed to achieve the fixpoint.

One technique to partition the product automaton graph is part of the algorithm itself.
It builds upon the fact that if two vertices differ in their values of map, they cannot lie on
the same cycle. Therefore, the propagation in the COMPUTEALLMAPS procedure may be
localized to those edges (u, v) for which the values of map(v) and map(u) computed in the
previous outer iteration are the same. The values of map function from the previous outer
iteration are referred to as oldMap values.

4.1.2 ONE-WAY-CATCH-THEM-YOUNG Algorithm

The key idea of the OWCTY algorithm is maintaining an approximating set of vertices that
may lie on an accepting cycle in the graph G. The algorithm repeatedly refines the approx-
imating set by locating and removing vertices that cannot lie on any accepting cycle. The
algorithm employs two rules to remove vertices from the approximating set: First, a vertex
is removed from the approximation set if it cannot be reached from an accepting vertex in the
set, second, a vertex is removed from the approximation set if it has zero in-degree within
the set.

The basic scheme of the OWCTY algorithm is given in Algorithm 9. The FORWARD-
REACHABILITY(S) procedure (Algorithm 3) computes the set of all vertices that are reachable
from the set S. The ELIMINATION(S) procedure (Algorithm 10) successively eliminates those
vertices that have zero in-degree in S. The assignment on line 5 removes from the graph the
vertices according to the first rule. The assignment on line 6 removes vertices according to
the second one. The while loop terminates when a fixpoint of the approximation is reached.
If the approximating set is nonempty, the presence of an accepting cycle is guaranteed. The
proof of the correctness can be found in [39]. Moreover, we can weaken the termination
condition in the following way:

Proposition 4.1.1. ELIMINATION(S) = S is a correct termination condition of Algorithm 9.
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Algorithm 9: CPU OWCTY algorithm

Input : directed graph G = (V, E, v0, A) of AS×¬ϕ

Output:
{

true if AS×¬ϕ contains accepting cycle
false otherwise

1 S ← FORWARDREACHABILITY(v0)
2 old← ∅
3 while S 6= old do
4 old← S

5 S ← FORWARDREACHABILITY({s|s ∈ S ∧ A(s)})
6 S ← ELIMINATION(S)

7 return S 6= ∅

Algorithm 10: CPU ELIMINATION procedure

Input : directed graph G = (V, E) and set of vertices S
Output: set of vertices R = {r ∈ S | ∃ c0, c1, . . . , cn−1 ∈ S :

∀ i (0 ≤ i < n) (ci, c(i+1) mod n) ∈ E ∧∃ j (0 ≤ j < n) (cj = r ∨ (cj , r) ∈ E+)}

1 R← S

2 old← ∅
3 elim← {e ∈ R | @ r ∈ R : (r, e) ∈ E}
4 while old 6= elim do
5 old← elim

6 R← Rr elim

7 elim← {e ∈ R | @ r ∈ R : (r, e) ∈ E}
8 return R

Proof. Let us assume that S′ := FORWARDREACHABILITY(S ∩ F ) = ELIMINATION(S) and
let  denote reachability relation. Then if S′ 6= ∅ we have: 1) ∀u ∈ S′.∃v ∈ F : u  v, 2)
∀v ∈ S′.∃u ∈ S′ : (u, v) ∈ E. Hence there is an infinite sequence π := u1, v1, u2, v2, . . . :
ui ∈ F, (vi, ui) ∈ E, ui  vi−1. And since F is finite, we may conclude that π contains an
accepting cycle.

The time complexity of the OWCTY algorithm isO(|V |·(|V |+|E|) [39] since it eliminates
at least one vertex in each iteration of the main while loop on line 3 (otherwise it terminates)
and both FORWARDREACHABILITY and ELIMINATION take O(|V |+ |E|) time.

In practice, the number of iterations of the while loop needed to compute the fixpoint is
very small. This can be supported in theory by the fact that the number of iterations needed is
bound by the height of the component graph of G. The height of the graph G is the length of
the longest path in the component graph ofG (note that the component graph is acyclic). Let
h be a height of the input graph, then the more precise complexity of the OWCTY algorithm
isO(h·(|V |+|E|)) [39]. Moreover, the algorithm takes onlyO(|V |+|E|) time for an important
subclass of LTL properties so-called weak LTL properties (only one iteration of the main
while loop is required) [14].
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Algorithm 11: GPU MAP algorithm – host code

Input : directed graph G = (V, E, v0, A) of AS×¬ϕ

Output:
{

true AS×¬ϕ contains accepting cycle
false otherwise

1 CREATEREPRESENTATION(G,Ae, Ai,Maps)
2 accCycleFound, fixPointFound,unmarked← false,false,false
3 COPYTOGPU((Ae, Ai,Maps)→ (gAe, gAi, gMaps))
4 while unmarked ∧ ¬accCycleFound do
5 while ¬fixPointFound ∧ ¬accCycleFound do
6 fixPointFound← true
7 MAPKERNEL(gAe, gAi, gMaps,accCycleFound, fixPointFound)

8 unmarked← false
9 UNMARKACCKERNEL(gMaps,unmarked)

10 return accCycleFound

4.2 Data-Parallel Version of MAXIMAL-ACCEPTING-PREDECESSOR Algorithm

As discussed in the previous sections, to achieve good acceleration on massively parallel
architectures, the input data must be represented in an appropriate, preferably vector-like,
fashion. This is easily achievable in the MAP algorithm as the additional data required by
the algorithm are associated with vertices, hence, they can be stored in vectors. In particular,
the MAP algorithm maintains array Maps that keeps the values of map, oldMap and A
predicate for each vertex.

The main computation demanding part of the MAP algorithm is the COMPUTEALLMAPS

procedure, see Subsection 2.3.1. This procedure can be parallelized in the way similar to the
previous case of the forward reachability procedure. Algorithm 11 lists the host code of the
MAP algorithm. The inner and outer while loops listed in the pseudo-code correspond with
the inner and outer iterations as introduced in Subsection 2.3.1.

There are three kernel procedures called from the host code. The most important one,
MAPKERNEL, is listed as Algorithm 12. Every call to MAPKERNEL updates the map values
along every edge (see lines 5 and 8-9). If no accepting cycle is found a fixpoint is detected in
MAPKERNEL using the variable fixPointFound. If there is no map value to be further propa-
gated, the outer iteration is completed by a call to UNMARKACCKERNEL to unset the accept-
ing predicate for accepting states proven to be outside an accepting cycle. A pseudo-code of
UNMARKACCKERNEL is listed as Algorithm 13. The values of map and oldMap are handled
so that the oldMap values partition the graph with respect to the previous outer iteration.

The performance of the MAP algorithm deeply depends on the vertex ordering [36].
With inappropriate vertex ordering the execution of the CUDA MAP algorithm may be sig-
nificantly slower. Unfortunately, the ordering of vertices is partially determined by the way
in which the graph representation is computed. We should point out that in the context of
model checking we are actually computing minimal accepting successors. Considering suc-
cessors allows us to store only the forward edges in the graph representation and preferring
smaller values inverts the BFS ordering enforced by generation (actual BFS ordering pro-
vided significantly worse results). This observation can be explained by existence of paths
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Algorithm 12: GPU MAPKERNEL – device code (run in parallel ∀v ∈ V )

Input : gAe, gAi, gMaps,accCycleFound, fixPointFound

1 myVertex, candidate← gMaps[v],⊥
2 foreach u ∈ succ(v) do // succ(v) = {gAe[gAi[v]], . . . , gAe[gAi[v + 1]]}
3 mySucc← gMaps[u]
4 if myVertex.oldMap = mySucc.oldMap then
5 candidate← max{candidate,maxacc(v, u)}

6 if candidate = v then
7 accCycleFound← true

8 if candidate > myVertex.map then
9 myVertex.map, fixPointFound← candidate,false

10 gMaps[v]← myVertex

Algorithm 13: GPU UNMARKACCKERNEL – device code (run in parallel ∀v ∈ V )

Input : gMaps, unmarked

1 myVertex, change← gMaps[v],false
2 if A(v) ∧myVertex < v then
3 A(v), unmarked, change← false,true,true

4 if myVertex.map 6= myVertex.oldMap then
5 myVertex.oldMap,myVertex.map, change← myVertex.map,⊥,true
6 if change then
7 gMaps[v]← myVertex

going out of accepting cycles: prolonging search for maximal successor and preventing ter-
mination when one is found. While avoided by order inversion, this aspect seems to be
partially restored when generation is done concurrently. The following CUDA accelerated
OWCTY algorithm proved more resistant to any improper ordering in the representation.

4.3 Data-Parallel Version of ONE-WAY-CATCH-THEM-YOUNG Algorithm

The non-CUDA version of OWCTY algorithm comprises of alternating execution of for-
ward reachability and backward elimination (Algorithm 9). In the current context we denote
elimination of vertices without immediate predecessors as backward elimination. These two
operations will similarly be the building blocks of our CUDA accelerated implementation of
the OWCTY algorithm.

Implementation of reachability was given sufficient space in Section 3.2. Therefore, we
will focus on describing in more detail the implementation of backward elimination and
subsequently the whole OWCTY algorithm. Given the fact that the algorithm disposes of
only the forward edges we were unable to follow the most obvious implementation proce-
dure, i.e. to eliminate a vertex if all its predecessors were already eliminated. The option of
providing also the backward edges would be overly complex both in time and space.
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Algorithm 14: GPU ELIMINATION Procedure

Input : gAe, gAi, gF lags,accCycleFound, fixPointNotFound

1 changeFound← true
2 while changeFound do
3 PROGRESSKERNEL(gAe, gAi, gF lags)
4 changeFound,accCycleFound← false,false
5 CHECKKERNEL(gF lags, changeFound,accCycleFound)
6 fixPointNotFound← changeFound ?true : fixPointNotFound

kernel PROGRESSKERNEL(gAe, gAi, gF lags)
7 if gF lags[v].elim = false then
8 foreach u ∈ succ(v) do // succ(v) = {gAe[gAi[v]], . . . , gAe[gAi[v + 1]]}
9 if gF lags[u].elim = false ∧ gF lags[u].elimPrep = true then

10 gF lags[u].elimPrep← false

kernel CHECKKERNEL(gF lags, changeFound,accCycleFound)
11 if gF lags[v].elim = false then
12 if gF lags[v].elimPrep = true then
13 gF lags[v].elim, changeFound← true,true

14 else
15 gF lags[v].elimPrep, accCycleFound← true,true

Our backward elimination hence needed to consist of two steps (see Algorithm 14). The
first step is performed by the CUDA kernel PROGRESSKERNEL, starting at line 7. This kernel
has the purpose of propagating the property of not to be eliminated to its successors. Fol-
lowed by the second kernel CHECKKERNEL which eliminates vertices without this property.
Finally, the flags elim and elimPrep are stored as bits in a piece of memory assigned to every
vertex, which allows their change to be performed very fast.

Having described the building blocks, we may proceed to the actual OWCTY algorithm
implementation (see Algorithm 15). The basic layout is similar to the original implementa-
tion. The CUDA kernel VISACCEPTINGKERNEL sets all accepting vertices (that have not yet
been eliminated) to visited. Having considered the Proposition 4.1.1, we do not need to test
if FORWARDREACHABILITY visited all vertices. Only its effect, the elimination of non-visited
vertices is necessary (via the kernel TESTSETKERNEL). Afterwards this kernel also sets all
vertices to unvisited to prepare the next iteration of the main loop. The elimination proceeds
as described above. Furthermore, if no vertex is eliminated (line 6 of Algorithm 14) the algo-
rithm terminates with resulting value stored in variable accCycleFound. It is observable that
accCycleFound keeps track of existence of the not eliminated vertices thus providing correct
answer once the main cycle terminated.

The dual version of the OWCTY algorithm, here referred to as reversed OWCTY, may
seem to present equivalent obstacles as far as the CUDA implementation is concerned. How-
ever, as stated in Subsection 3.2.1, backward reachability via forward edges is tractable (with
certain slowdown), which allows us to implement elimination in the trivial way sketched
above. The rest of the algorithm remains unchanged.
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Algorithm 15: GPU OWCTY algorithm – host code

Input : directed graph G = (V, E, v0, A) of AS×¬ϕ

Output:
{

true AS×¬ϕ contains accepting cycle
false otherwise

1 CREATEREPRESENTATION(G,Ae, Ai, F lags))
2 COPYTOGPU((Ae, Ai, F lags)→ (gAe, gAi, gF lags))
3 VISACCEPTINGKERNEL(gF lags)
4 fixPointNotFound,accCycleFound← true,false
5 while fixPointNotFound do
6 reachabilityFixPointFound← false
7 while ¬reachabilityFixPointFound do
8 reachabilityFixPointFound← true
9 FORWARDREACHABILITYKERNEL(gAe, gAi, gF lags, reachabilityFixPointFound)

10 TESTSETKERNEL(gF lags)
11 fixPointNotFound← false
12 ELIMINATION(gAe, gAi, gF lags,accCycleFound, fixPointNotFound)
13 VISACCEPTINGKERNEL(gF lags)

14 return accCycleFound

kernel VISACCEPTINGKERNEL(gF lags)
15 if gF lags[v].acc = true ∧ gF lags[v].elim = false then
16 gF lags[v].visited← true

kernel TESTSETKERNEL(gF lags)
17 if gF lags[v].visited = false then
18 gF lags[v].elim← true

19 gF lags[v].visited← false

In [26] we show that the reversed variant of the CUDA accelerated OWCTY algorithm
has better times that the standard variant. The reason behind it is that in reversed OWCTY
the elimination was implemented more efficiently to the detriment of the reachability proce-
dure. And since in most of the tested models the reachability needed considerably less itera-
tion, it was the reversed version that thrived. We will compare the performance of the CUDA
MAP and CUDA reversed OWCTY algorithms (further referred only as CUDA OWCTY)
and the optimal sequential NDFS algorithm in the context of LTL model checking in Sec-
tion 5.5.

4.4 Conclusion

In this chapter, we introduced two selected parallel algorithms for accepting cycle detection,
namely the MAP and OWCTY algorithms that have been shown to have the best practi-
cal performance. Since these algorithms were designed assuming parallelism provided by
shared-memory multi-core or distributed-memory architectures, we reformulated the algo-
rithms to benefit from SIMD architecture parallelism the modern GPUs offer. In particular,
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we showed how to build the efficient data-parallel versions of these algorithms from the
basic graph primitives. This allows to keep the provably correct layout of the existing algo-
rithms but significantly accelerates their computation on many-cores GPUs.

The experimental evaluation of the particular algorithms for accepting cycle detection in
the context of LTL model checking is presented in Section 5.5.

In our future work, we plan to employ the recently proposed methods such as the warp-
centric programming [69] and the linear parallelization [91] (see Chapter 3 for more details)
in order to further accelerate the accepting cycle detection on the many-core GPUs.
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Chapter 5

Fast LTL Model Checking Algorithms for Many-Core GPUs

In this chapter we show how the proposed data-parallel algorithms for accepting cycle de-
tection can be employed in order to accelerate the LTL model checking process on modern
many-core GPU platforms.

The model checking techniques generally suffer from the so-called state space explo-
sion problem that makes a wide gap between the complexity of systems the current model
checking tools can handle and the complexity of systems built in practice. As a result, the
applicability of the model checking method to large, hence realistic, industrial systems is
rather limited unless additional techniques are employed.

Several clever techniques have thus been introduced to fight the state space explosion
problem in model checking. The most successful techniques are the partial order reduc-
tion [98, 34] and symbolic representation [90] that both aim at the reduction of the com-
putational resources needed for a verification task. However, in the last decade a different
approach to fight the state space explosion problem has attracted the model checking com-
munity – using multi-core or multiple computers for parallel and distributed model check-
ing. The primary goal here is to extend the available memory to handle larger verification
problems. Nevertheless, generating and analyzing large state spaces calls for parallel algo-
rithms in order to obtain the desired level of performance.

It is the recent shift in the hardware architecture design towards multi-cores with large
amounts of local RAM that has intensified research pertaining to shared memory paradigm.
Multi-core extension to the existing sequential LTL model checker SPIN [67] has been in-
troduced [68], the LTSmin tool [29] now uses a multi-core version of the nested depth-first
search [77, 78] and there has also been a dedicated multi-core branch [12, 13] of parallel
model checker DiVinE [16]. For share memory architectures, linear speedup of model check-
ing is the primary goal [79]. Besides multi-core and multi-CPU systems, many-core hard-
ware accelerators have received a lot of attention as well. Recent model checking research
results related to the use of CUDA technology describe CUDA accelerated state space gen-
eration [52, 53, 54] or model checking of probabilistic systems [32].

As we describe in Section 2.3.1, the LTL model checking problem can be reduced to
the problem of deciding existence of a reachable accepting cycle in the product automaton
graph. As far as GPU accelerated accepting cycle detection is concerned, Chapter 4 could
serve as a complete description. However, in LTL model checking as a whole, accepting cy-
cle detection is only one part of the solution. To fully solve the model checking problem using
GPUs there are other issues that need to be tackle, e.g. transformation from implicit graph
representation to a form suitable for GPU computation and overcoming of GPU memory
limitation. The solution of problems related to and further optimization of GPU accelerated
model checking will form the content of this chapter.
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5.1 Computation of Adjacency List Representation

The crucial procedure of the whole verification process is the transformation of the input
data as given to the model checker, into a form suitable for CUDA accelerated computation
(line 1 of Algorithm 11 and line 1 of Algorithm 15). In the model checking process the graph
is given implicitly by a function to enumerate initial vertices, a function to enumerate edges
emanating from a given vertex, and a function to check for accepting status of a given vertex.
In order to use the CUDA accelerated algorithm, we have to turn the implicit definition of the
graph into an explicit one. This process is generally referred to as the state space generation.
In addition to the explicit state space construction we also have to build the corresponding
adjacency list representation of the graph.

The main bottleneck of the whole CUDA accelerated approach to LTL model checking
is the costly procedure of the construction of the adjacency list representation [21]. In order
to alleviate the burden of the transformation of the implicit definition of the graph into the
adjacency list representation, we have devised a multi-core parallel procedure for it. The
procedure builds upon the multi-core parallel state space exploration that is reported to
achieve up to ten-fold speed-up on a 16-core machine [12, 13].

In the parallel state space generation procedure the vertices of the graph are assigned
to parallel workers using a hash-based partition function. Each parallel thread has a local
storage to keep track of the generated vertices assigned to the thread. Vertices that are new
(have not been stored yet) are stored and their immediate successors are generated. Non-
local vertices are handed out to the owning threads according to the partition function. When
none of the threads has new vertices to be processed the state space generation terminates.
The crucial aspect regarding the scalability is the way the threads exchange vertices to be
explored. In this approach we rely on contention and lock-free queue structures (FIFOs).

Note that recently another method allowing for more efficient multi-core acceleration of
state space generation has been proposed [79]. In contrast to the aforementioned method,
they are using shared storage based on a lock-free hash table and therefore this approach
can benefit from low communication costs. No vertex has a predefined owner and all new
vertices are sent to a shared queue. Communication with the queue has to be protected by
locking and to minimize the number of these locks it was further proposed that the elements
of the queue are not single vertices but rather whole chunks of them. The two methods can
be distinguished on the illustration of their work-flow in Figure 5.1.

The key extension required from the state space generation procedure is the computation
of a unique integer number for each vertex. In particular, we require a mapping of vertices
into integer numbers between 0 and |V | − 1. This is slightly tricky if we want to avoid mul-
tiple state space traversal. When a transition is generated and stored to the adjacency list
representation the number of the target vertex is unknown to the generating thread. Hence
we need to alter the hash table to also contain the number associated with each state. Note
that in the case that a counterexample generation (described in Section 5.3) was required, we
also store in the hash table a pointer to the predecessor state to create the parent graph.

Yet even if the hash table contains with every state a unique identifier, there is the possi-
bility that the target vertex is not stored in the hash table. To solve this problem we have de-
signed a write-only vector data structure that allows insertion of data in two different ways.
A vector element can be inserted either directly by calling void push back(T elem), or in a
two-phase manner, where we first allocate space for the element by calling T∗push empty()
and then we store it using the returned pointer.
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Figure 5.1: Comparison of the work-flow of the two state-of-the-art approaches to state space
generation. a) uses a single shared hash table (storing closed vertices) and a shared queue
(vertices to be expanded). Without any distribution this approach is limited to shared mem-
ory parallelism. In b) every thread has its own hash table and queue, but vertices from other
graph partitions must be sent to their owners.

The parallel adjacency list construction procedure works as follows. The number that a
thread assigns to a vertex is composed of two parts, these are the thread-unique thread id
(4 bits) and per thread-unique vertex number (28 bits). When a local vertex is generated
by a thread it is given the lowest per-thread fresh number – stored directly in the vector
using push back function. The specific solution differs for shared and distributed hash table
approach. In distributed approach, when a non-local vertex is generated, a space for it is
preallocated using push empty function and the address of the preallocated space is sent
together with the vertex to the owning thread that assigns a number to the vertex and stores
it to the preallocated space remotely.

In shared hash table approach, a tuple (vertex, address) is enqueued on the shared queue
and the thread that removes the tuple is responsible for storing the vertex in the hash table
with unique number and for writing this number to the dequeued address. The additional
adjacency list construction contributes nontrivially to the amount of work done during state
space generation. Apart from other aspects, now every thread has to enqueue all vertices
that are not yet in the hash table (before the thread could store these vertices itself). Even
though the construction almost doubled the generation time our experiments show that the
speedup gained from using compact representation enables to overcome the effect of slower
generation.

As soon as the whole state space is generated, the local vectors are concatenated into a
single system-wide vector and processed with two CUDA kernels to translate the pairs of
numbers into continuous range of integers. Note that due to the parallel processing, the final
ordering of vertices in adjacency list representation is not computed deterministically.

Finally, to accelerate CUDA computation, we employed a decomposition technique to
shrink the product automaton graph [80, 15]. The idea is to decompose the property au-
tomaton into strongly connected components and then project this decomposition to the final
graph. Since some parts of the product automata graph are known to be without accepting
vertices in advance they may be omitted when constructing the adjacency list representation
of the graph. This technique significantly reduced the size of the representation as well as
the number of repropagations needed (see the Section 5.5).
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Efficient utilization of many-core GPUs to accelerate state space generation is another
logical direction of research in the community of parallel and distributed model checking.
Edelkamp et al. have proposed the acceleration of state space generation by executing com-
plex operations on GPUs [54]. They have achieved significant speedup of transition enable-
ment checking and successors generation. However, duplicate detection, the most crucial
part of the state space generation, has not been parallelized on GPU yet. Thus the overall
speedup of the whole state space generation was moderate.

5.2 Multi GPU Model Checking

The size of the compact representation can be estimated to approximately 8|V |+ 4|E| bytes
for the OWCTY algorithm and 12|V |+ 4|E| bytes for the MAP algorithm, which is consid-
erably less that the amount of memory consumed by a model checking procedure that stores
the whole states. Despite the fact that both our algorithms use a compact representation,
the model checking graphs tend to be exceedingly large, an thus the scope of the proposed
algorithms is diminished due to GPU memory limitation. In this section we describe two
methods to overcome the memory limitation of a single GPU device in the context of CUDA
accelerated LTL model checking. Both approaches build upon the idea of splitting the data
structures into parts and distributing them among multiple GPU devices. Such a strategy al-
lows to process verification instances that do not fit the memory of a single GPU device, but
fit the aggregate memory of multiple GPU devices. There are two primary data structures to
be partitioned. First, the adjacency list representation of the graph, and second, the vector of
values associated with individual vertices (see Section 4.2).

Ideal partitioning would be to split both data structures into a number of even-sized
pieces in such a way that processing these pieces in parallel would require no interaction
among parallel threads. This is possible only if no accepting cycle crosses the boundaries
of a single graph partition. Unfortunately, such a partitioning generally does not exist, and
even if it does, it is computationally expensive to be obtained. As a result we do not aim at
computing a partitioning that would preserve cycle locality, but rather at the partitioning
that allows for uniform data structure distribution while being aware of the necessity of
interaction during the parallel computation.

The two suggested partitionings are as follows. In the first approach, we partition only
the adjacency list representation of the graph, i.e. every GPU device keeps one part of the
adjacency list representation and the complete vector of values associated with vertices. We
do such a partitioning of the adjacency list representation in order for all edges emanating
from a single vertex to be positioned to the same partition. The second approach extends the
first one. It also introduces distribution of the vector of values. In particular, every GPU de-
vice keeps one part of the adjacency list representation, and a reduced vector of values. The
reduced vector keeps the values for all vertices that appear in the local adjacency list repre-
sentation part. Note that some of those vertices are the so called foreign vertices, i.e. vertices
whose edges are kept in another (foreign) part of the adjacency list representation, but are
listed as end-points of some edges in the local part of the adjacency list representation.

5.2.1 Synchronization

Here we explain how to utilize multiple GPU devices to accelerate the MAP algorithm and
then we discuss how to generalize this approach to other graph algorithms such as OWCTY.
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Algorithm 16: Multi GPU MAP algorithm (inner fixpoint) – host code

Input : localG, localMaps, accCycleFound, fixPointFound

1 globalChange← true
2 while globalChange ∧ ¬accCycleFound do
3 foreignMaps, localChange← DOWNLOAD(),false
4 while ¬fixPointFound ∧ ¬accCycleFound do
5 fixPointFound← true
6 MAPKERNEL(localG, localMaps, foreignMaps, accCycleFound, fixPointFound)
7 localChange← localChange ∨ ¬fixPointFound

8 UPLOAD(localMaps)
9 VOTEIN(localChange)

10 RENDEZVOUS()
11 globalChange← VOTEOUT()

Having the edges of the graph distributed among multiple GPU devices the local com-
putation of the algorithm comes across the necessity to exchange the map values of foreign
vertices, the so-called synchronization. In the distributed MAP algorithm (Algorithm 16) ev-
ery single GPU device computes the local fixpoint as in the single CUDA computation, but
then it synchronizes on the values of foreign vertices with all the other CUDA devices. The
local fixpoint is thus achieved using solely the mutable map values of local vertices and the
constant map values of foreign vertices received from the synchronization. These two sub-
sequent steps repeat until a global fixpoint is found. Since the map values of foreign vertices
are constant throughout the local fixpoint search, the UPLOAD is conditioned by a change
detected after considering these values for the first time within the inner cycle. If the global
fixpoint is found in zero iterations, the individual parallel CUDA workers vote for global ter-
mination. Then if after a barrier operation the vote for termination is unanimous (lines 9-11),
the algorithm terminates.

In the case of a more complicated graph algorithms such as OWCTY with alternating
execution of the forward reachability and the backward elimination, we have to perform
the synchronization and the vote for termination once the local fixpoints of each phase are
found. Apart from small adjustments of the termination condition this was the only change
necessary for the OWCTY algorithm to be extended to work on multiple GPU devices. We
direct the reader to Section 5.5 to see the comparison of both algorithms.

5.2.2 Preparing Foreign Vertices Vectors

The synchronization procedure requires to exchange only the values associated with foreign
vertices, however, the communication between GPU devices is realized through the host
memory, where the complete vector of values is maintained. This does not make any prob-
lem as regards the first partitioning approach. However, if a GPU device wanted to read only
the values associated with the foreign vertices from the host memory as in the case of the
second approach, it would have to perform a scattered read, which is not very efficient.

Our solution to this problem is that after the partitioning of the graph representation, we
compute a list of foreign vertices for every participating GPU device. We duplicate values
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Figure 5.2: Example of the compacted vector construction for foreign vertices. a) Graph par-
titioning. b) The compact vector allocating procedure: it fails for i = 2 and is successful for
i = 3; mapping foreign vertices on their counterparts in the compacted vector.

stored for the foreign vertices in a separate compacted vector, i.e. a vector containing only
the values for foreign vertices for a particular GPU device and use this vectors for efficient
communication between host and device memory. Note that individual adjacency list rep-
resentations need to be modified so that all occurrences of foreign vertices are replaced and
accompanied with a special bit indicating that the number is not the local number but an
index to the vector of values of foreign vertices.

The compaction procedure is done as follows. First, we employ a CUDA kernel to mark
all foreign vertices in the vector of edges in the partitioned adjacency list representation.
This can be done due to the static and uniform nature of the partitioning. Then we create a
compacted vector containing all foreign vertices exactly once.

In order to sum the number of unique foreign vertices effectively we could mark the first
occurrence of each foreign vertex using the reduce [64] and atomicCAS operations. This
would, however, require a copy of the whole vector of vertices which we cannot afford due
to the space limitation. To get a safe but close overapproximation of the number of foreign
vertices we therefore apply the heuristics as illustrated in Figure 5.2.

Let i be a small integer number. We allocate a vector of size 2i and process it by CUDA
kernels performing iteratively the following operations. First, we try to store every foreign
vertex v on the position v&(2i−1 − 1), if there are conflicts for multiple vertices on some
positions, we keep only the first vertex stored on the position and try to store those other
conflicting vertices v on the position 2i−1 + v&(2i−1 − 1), if there are still conflicts, we se-
quentially look for empty position from 2i−1 + v&(2i−1 − 1) + 1 to 2i−1 + v&(2i−1 − 1) + i

to store every conflicting vertex v. If the call of CUDA kernel is unable to resolve all the
conflicts within O(i) steps, we increment i and repeat the procedure.

After that we have a compacted vector of the size 2i containing all foreign vertices exactly
once. We finish the preparation of the vector by sorting the vector and cutting off the prefix
of zeroes. To finish the preparation of the data for multiple CUDA computation we map
the foreign vertices with their counterparts in the compacted vector. This is carried out by a
single kernel implementing binary search.

46



5. FAST LTL MODEL CHECKING ALGORITHMS FOR MANY-CORE GPUS

5.3 Early Termination

A key property of some model checking algorithms is that they can be altered to provide
early termination. It means that they can detect the presence of an accepting cycle before the
state space generation procedure completes its task. We were able to adapt our implementa-
tion of both CUDA accelerated algorithms to mimic this behavior as well. In particular, we
let the CPU perform (parallel) state space generation while having the GPU apply CUDA
accelerated algorithms on partially constructed graph. If the part of the graph constructed
so far contains an accepting cycle, CUDA accelerated algorithms simply reveals it before the
state space generation is complete.

To further extend the potential efficiency of the proposed model checking method we al-
low for both the MAP and the OWCTY algorithm to be executed concurrently in the back-
ground of the state space generation. This work-flow, though requiring two GPU devices,
provides the best result of the two algorithms whether or not was the early termination
available (and with negligible impact on their stand-alone performance).

5.4 Counterexample Generation

An important part of the model checking procedure is counterexample generation. If the
given model does not satisfy the inspected property and thus an accepting cycle is found, the
tool has to provide a counterexample, i.e. an example of behavior violating the property. In
the case of LTL model checking, the counterexample consists of states forming the accepting
cycle and states on a path from the initial state to that cycle. In order to efficiently generate the
counterexample we have to consider the state space representation and also the algorithm
for the accepting cycle detection. In contrast to traditional approaches, our GPU accelerated
algorithms are using compact representation of the part of state space where the path from
the initial state to the cycle is not necessarily stored (see Section 5.1). Moreover, the states in
the compact representation are stored only as unique numbers that do not contain necessary
information for the user, and thus a translation back to the full state description is required.
Therefore the counterexample generation is more involved in our case and includes two
phases.

In the first phase both the MAP and the OWCTY algorithm identify the states in the
compact representation that form the found cycle. The MAP algorithm provides an accept-
ing state on the cycle and marks the part of state space where the cycle is located. There-
fore, the cycle can be easily identify using the forward reachability that is launched from
the accepting state and restricted to the marked part, followed by the backward reachabil-
ity launched from the accepting state. The backward reachability follows the parent graph
in which each state keeps only one predecessor and that was created during the foregoing
forward reachability and stored in oldMaps. We can clearly see that in the case of the MAP
algorithm the first phase of the counterexample generation has linear time complexity.

The OWCTY algorithm only marks the part of the state space where the cycle is located
and therefore we have to first find an accepting state on the cycle. In order to do this we
repetitively pick an accepting state from this part of the state space and run a restricted
forward reachability to detect whether the state lies on the cycle. If it does not we can safely
remove the state and all the other states that have been completely searched during the
reachability and continue. This ensure that each state is visited in the reachabilities only
once and the first phase of the counterexample generation keeps linear time complexity [39].
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Models Model description Inspected LTL properties

elevator The elevator controller
1: If level 1 is requested, it is served eventually.
2: If level 1 is requested, it is served as soon as the cab
passes the level 1.

peterson Peterson’s mutual exclusion
algorithm

1: Infinitely many times someone is in critical section.
2: If process 0 is not in the critical section then it will
eventually reach it.

leader
Leader election algorithm based
on filters Eventually leader will be elected.

anderson Anderson’s queue lock
mutual exclusion algorithm

If the process is active infinitely often then it is in the
critical section infinitely often.

bakery Bakery mutual exclusion
algorithm

If the process is active infinitely often and starts to wait
then it waits until reaches the critical section and it
eventually reaches the critical section.

phils Dining philosophers problem Infinitely many times someone eats.

lamport
Lamport’s fast mutual exclusion
algorithm Infinitely many times someone is in the critical section.

brp Bounded retransmission
protocol

If the producer sends message, it will eventually get
some acknowledgment from the sender process.

Table 5.1: Models used in the experiments with properties they are expected to have.

Since for both algorithms the first phases includes only the restricted forward and backward
reachability it can be efficiently accelerated by the GPU as we already described.

In the second phase we select a state on the cycle (represented only as the unique num-
ber) and obtain its full state description. To efficiently get this description we have to scan
the hash table where both the full state description and the corresponding unique number
are stored. This scanning can be easily parallelized by multi-core CPU since each thread can
independently scan a part of the hash table. Once we get the full description of the state
we can run the restricted CPU forward and backward reachability on the explicit represen-
tation (containing the full state description of the entire state space) to obtain the full state
description of states forming the cycle and states forming the path to the cycle, respectively.
The forward reachability is navigated by states on the cycle and backward reachability is
navigated by the parent graph that is created during the initial state space generation. Since
this phase includes only one forward and backward reachability and one linear scanning of
the hash table, it has also linear time complexity. Although the scanning is not performed
during the standard approach where only the full explicit representation of the state space
is employed, it has a negligible impact on the overall practical performance of the tool.

5.5 Experimental Evaluation

We have implemented the designed algorithms and methods as a part of the DiVinE-CUDA
tool [20]. We compared the performance of the CUDA implementation against CPU imple-
mentations, employing the same state space generator, and against the state-of-the-art par-
allel model checkers. We used DiVinE native models as listed in Table 5.1. Moreover, we
provide an example of models which cannot be verified using the original (single CUDA)
algorithms because of space limitation. We show that the employment of the methods for
multiple GPU devices (described in Section 5.2.2) allows verification of these models.
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Model
vertices edges RAM accepting

explored stored explored stored cons. cycle
elevator 1 5.0 mil 1.7 mil 63.1 mil 20.5 mil 2.4 GB N

leader 26.3 mil 26.3 mil 84.1 mil 84.1 mil 3.8 GB N
peterson 1 19.0 mil 9.5 mil 124.9 mil 41.5 mil 4.6 GB N
anderson 10.7 mil 6.2 mil 46.8 mil 26.3 mil 2.1 GB N
lamport* 74.4 mil 35.8 mil 422.8 mil 129.7 mil 21.3 GB N

elevator 2 0.23 mil 0.18 mil 1.84 mil 1.56 mil 741 MB Y
phils 0.2 mil 0.17 mil 1.72 mil 1.47 mil 774 MB Y

peterson 2 0.94 mil 0.74 mil 4.35 mil 3.55 mil 786 MB Y
bakery 0.24 mil 0.2 mil 1.0 mil 0.89 mil 794 MB Y

brp* 84.5 mil 42.3 mil 263.2 mil 87.4 mil 22.1 GB Y

Table 5.2: Spacial complexity of the models and existence of accepting cycles.

All the experiments were run on a Linux workstation with two quad core Intel Xeon
E5335 Processors @ 2GHz, 8 GB DDR2 @ 1066 MHz RAM and two NVIDIA GeForce GTX
480 GPU with 1.5 GB of GPU memory. In the case of models indicated by stars, whose explicit
representation did not fit in the main memory, we first had its adjacency list representation
created on a workstation with 32 GB RAM and then we finished the experiments on our
CUDA-equipped workstation. Our previous results reported in [21, 26, 8] were all measured
on a workstation with the preceding generation of GPUs (GTX 280). The main difference
from current generation lies in doubling the number of parallel cores. This hardware up-
grade resulted in almost twofold speedup in CUDA computation, yet in the runtimes of the
whole model checking procedure it was hardly noticeable.

Table 5.2 captures various statistics of the models. The difference between stored and ex-
plored vertices (edges) illustrates how much of the state space consists of subgraphs with-
out accepting states and therefore how much the technique proposed in Section 5.1 reduces
the size of the graph representation. The overall CPU memory consumption (column RAM
cons.) does not necessarily relate to the respective sizes of the models since the states stored
in hash tables may have different sizes for every model. The column accepting cycle depicts
whether the model contains the accepting cycle (invalid instance) or not (valid instance).
Note that if the graph contains an accepting cycle, the reported numbers refer to the state
when the accepting cycle was discovered (see Section 5.3 for more details).

5.5.1 Comparison with State-of-the-art Model Checkers

There are two leading model checkers in the paradigm of shared memory parallelism and
these are DIVINE [22] and LTSmin [77] (though technically DIVINE combines distributed and
shared memory parallelism). Considering that DiVinE-CUDA also requires shared memory
state space generator, it seemed reasonable to compare its performance with DIVINE and
LTSmin. For this comparison to be as fair as possible we have selected among all BEEM
models those whose checking by DIVINE lasted for more than 10 seconds, so that we would
be able to observe also the scalability of the tools. Another criterion was that the computation
does not run out of the operating memory.
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Figure 5.3: Effectivity of state-of-the-art model checkers on incorrect models (1..7 cores)

Using these criteria we found appropriate 10 incorrect and 6 correct models (it is impor-
tant to distinguish the two classes because of the on-the-fly capability of all the tools). During
our experiments we have observed that LTSmin is considerably more effective on incorrect
models. Having rightly attributed this phenomenon to the DFS ordering in which LTSmin
explores the state space, we have adapted our own state space generator to partially imitate
this behavior. First by using shared stack instead of a shared queue and then by reversing
the order in which vertices were taken from chunks. Experiments with reversed ordering are
marked with letter R. Also note that due to nondeterminism of the computation the runtimes
of particular runs can vary greatly and thus every experiment was run 5 times and we use
the median of the 5 runs in our plots.

In Figures 5.3 and 5.4 we depict the overall runtime on correct and incorrect models.
To make the view complete we have implemented the sequential nested-dfs algorithm for
the same compact representation as used in CUDA computation (denoted as cudaNdfs).
Though LTSmin usually thrives on incorrect models there were two models in our set on
which LTSmin performed very poorly (and had we removed these two models LTSmin
would have the best times). Yet overall the algorithms using compact representation clearly
dominate the incorrect models. Especially with the reversed order where most of the com-
putation time is spend in the common part in which the representation is prepared.

In much smaller scale this is also true for the experiments on correct models in Figure 5.4
where it is always necessary to generate the whole state space. Here it is also worth noting
that while the reversed generation should have no positive effect on the runtimes it can have
a negative effect on the MAP algorithm, because of its dependency on ordering of vertices.
The exact runtimes of the algorithms on some selected models are summarized in Table 5.3.
Note that the computation of the algorithms which ran out of memory is marked in the table
by n/a.

Scalability of model checking algorithm (see Figure 5.5) is more complicated to measure
because it is not always clear if the speedup was caused by non-determinism of state space
generation or by the actual efficiency of the accepting cycle detection algorithm. Hence we
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Figure 5.4: Effectivity of state-of-the-art model checkers on correct models (1..7 cores)
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Figure 5.5: Scalability of state-of-the-art model checkers on correct models (1..7 cores)

have decided to present only the data collected from verification of correct models where
this non-determinism is irrelevant. As we can see, in terms of scalability there is hardly
any difference between the reversed and normal ordering in state space generation. On the
other hand, the difference between shared and distributed hash tables is quite pronounced
as represented by the difference between DIVINE and CUDA algorithms.
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Models #cores
DiVinE-CUDA

LTSmin DiVinEMAP OWCTY NDFS
gen. prep. comp. tot. gen. prep. comp. tot. gen. prep. comp. tot.

elevator 1

1 18.7 0.5 19.7 39.0 19.5 0.5 0.6 20.6 18.6 0.5 3.5 22.7 45.6 32.3
2 10.6 0.5 19.9 31.2 11.1 0.5 0.5 12.3 10.8 0.5 3.5 14.9 39.7 29.7
4 6.0 0.5 20.5 27.1 6.4 0.5 0.5 7.5 6.0 0.5 3.6 10.2 37.8 25.4
7 3.9 0.5 18.0 22.5 4.1 0.5 0.5 5.3 3.9 0.5 3.6 8.1 39.4 19.2

leader

1 44.7 0.9 3.6 49.3 45.9 0.9 0.2 47.0 43.7 0.9 19.1 63.8 77.2 180.1
2 26.1 0.9 3.3 30.5 27.0 0.9 0.2 28.2 25.8 0.9 19.5 46.3 39.8 142.5
4 14.8 0.9 3.0 18.8 15.4 0.9 0.1 16.5 14.9 0.9 19.6 35.5 21.7 n/a
7 9.4 1.0 2.7 13.2 9.7 1.0 0.1 11.0 9.4 0.9 19.7 30.1 14.8 n/a

peterson 1

1 45.7 1.1 35.7 82.6 47.4 1.1 0.7 49.3 46.2 1.1 11.8 59.2 111.1 109.1
2 26.5 1.1 26.2 54.0 27.7 1.1 0.7 29.6 27.1 1.1 12.2 40.5 97.4 93.8
4 15.1 1.1 22.8 39.1 16.0 1.1 0.7 17.9 15.4 1.1 12.4 29.1 95.8 74.2
7 9.7 1.2 21.2 32.1 10.4 1.2 0.7 13.3 9.8 1.1 12.7 23.7 101.1 55.1

anderson

1 21.9 0.5 2.8 25.3 22.7 0.5 0.2 23.4 21.7 0.4 4.8 27.1 47.1 63.6
2 12.5 0.5 2.1 1.51 12.9 0.5 0.2 13.7 12.6 0.4 4.9 18.1 34.4 51.0
4 7.1 0.5 1.8 9.5 7.4 0.5 0.2 8.1 7.1 0.4 5.0 12.7 30.9 41.2
7 4.6 0.5 1.8 7.0 4.8 0.5 0.2 5.5 4.5 0.4 5.0 10.0 33.0 32.3

elevator 2

1 1.0 0.0 0.2 1.3 0.7 0.0 0.0 0.8 0.6 0.0 0.1 0.7 0.1 21.2
2 4.0 0.1 1.6 5.9 0.8 0.0 0.0 0.9 1.5 0.0 0.2 1.8 0.2 66.0
4 1.6 0.1 0.8 2.6 1.8 0.1 0.2 2.2 0.6 0.0 0.1 0.8 0.1 52.7
7 1.6 0.1 0.7 2.6 1.0 0.1 0.1 1.2 0.8 0.0 0.2 1.1 0.2 39.7

phils

1 0.7 0.0 0.0 0.8 0.7 0.0 0.0 0.8 0.5 0.0 0.0 0.5 217.8 24.8
2 0.7 0.1 0.0 0.8 0.8 0.1 0.0 0.9 0.5 0.0 0.0 0.6 216.2 77.9
4 0.8 0.1 0.0 0.9 0.9 0.1 0.1 1.1 0.5 0.0 0.0 0.6 n/a 24.4
7 0.9 0.2 0.0 1.1 1.0 0.1 0.1 1.3 1.9 0.3 0.2 2.4 n/a 13.8

peterson 2

1 5.1 0.1 2.2 7.5 1.6 0.1 0.2 1.9 1.3 0.0 0.1 1.5 0.1 136.6
2 3.4 0.1 1.0 4.7 0.8 0.0 0.0 0.9 1.5 0.0 0.2 1.8 0.1 104.4
4 8.5 0.3 5.7 14.5 3.9 0.2 1.3 5.5 5.0 0.3 1.4 6.8 0.1 79.3
7 10.5 0.7 46.2 57.5 2.9 0.3 1.0 4.2 3.7 0.3 1.5 5.6 0.2 59.4

bakery

1 0.7 0.0 0.0 0.8 0.7 0.0 0.0 0.8 0.5 0.0 0.0 0.5 198.5 19.5
2 0.7 0.0 0.0 0.8 0.7 0.0 0.0 0.8 0.5 0.0 0.0 0.5 125.6 2.6
4 0.7 0.1 0.0 0.9 0.8 0.1 0.0 0.9 0.5 0.0 0.0 0.5 61.9 2.9
7 0.8 0.1 0.0 1.0 0.8 0.1 0.0 1.0 0.5 0.0 0.0 0.6 53.3 5.4

Table 5.3: The comparison of LTL model checking tools (runtimes in seconds).

5.5.2 Comparison of Algorithms on Compact Representation

Table 5.3 provides details on runtimes of individual CUDA accelerated algorithm parts and
gives the comparison to the CPU algorithm running on up to 7 core. The table first reports
for all 3 algorithms on compact representation the state space generation times (gen.), then it
gives the time for creating the compact representation (prep.) and the times spent on CUDA
computation (comp.); it finally states the total runtimes (tot.) of all algorithms. As for the
CUDA algorithms, the total runtime also includes certain initialization overhead not re-
ported in the table. We can observe that in the CUDA accelerated OWCTY algorithm the
time for preparation of adjacency list representation significantly dominates to the whole
model checking procedure.
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Figure 5.6: The efficiency of combination of multi-core state space generation and many-core
accepting cycle detection. Red bar is for state space generation, green for compact represen-
tation preparation and blue represents the CUDA Computation.

We can also see that the CUDA accelerated OWCTY algorithm significantly outperforms
the original CUDA accelerated MAP algorithm on most valid model checking instances
(without accepting cycle). The results for invalid instances (with accepting cycle) speak also
in favor of the OWCTY algorithm, though the gain is considerably less impressive.

From Figure 5.6 we may observe how effective is the multi-core acceleration of the state
space generation – proposed in Section 5.1. We have summed the respective runtimes over
all tested models and plot them in each bar in the following order: the times of state space
generation (red), compact representation preparation (green) and the actual CUDA compu-
tation (blue). We can see a steady speedup of the adjacency list construction when more
CPU cores are used. However, as we have already explained, the parallel construction usu-
ally affects the ordering in adjacency list representation. This leads to different number of
calls to CUDA kernels (see [8] for more details) and to different times spent on CUDA com-
putation. Note that during the whole computation of the algorithm, one core oversees the
communication with GPU device and thus cannot be efficiently used in the adjacency list
construction.

The experiments also show that the performance of the CUDA OWCTY algorithm does
not depend on the ordering in adjacency list representation as much as the CUDA MAP al-
gorithm (see [26] for more details) and therefore the CUDA OWCTY algorithm has better
runtimes on almost all models also in the case when multi-core acceleration of adjacency list
construction is utilized. All together it seems that when multi-core acceleration of adjacency
list computation is utilized the OWCTY algorithm is clearly a winner for CUDA compu-
tation. The superiority is even more pronounced that it was in our previous papers [8, 26]
which is most likely caused by the usage of shared hash table approach to state space gener-
ation which also alters the vertex ordering.

5.5.3 Experiments on Multi GPU Algorithms

Figures 5.7a and 5.7b provide detailed comparison of the relative size of adjacency list rep-
resentation and the space efficiency for both described methods (see Section 5.2.2) of multi
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Figure 5.7: a) The space efficiency for the lamport model: depicting the space complexity of
respective methods including the variable per-card complexity of the 2nd method. b) The
average space efficiency for all models: depicting the average space occupancy per-card of
respective methods.

GPU computation. Figure 5.7a depicts the comparison of space efficiency of the two pro-
posed methods on the example of lamport model. The first method plainly fails to scale
with the number of employed GPU devices (given the fact that every card has to keep the
whole vector of MAP values). The second method scales considerable better, though show-
ing increasing dispersal as the number of devices grows (some cards require more space than
others, either for the representation itself or for supplementary arrays in the allocation part
– again see Section 5.2.2 for more details). This phenomenon can be moderated by allowing
the preparation phase to be more space and less time efficient.

Figure 5.7b further illustrates the difference of the two proposed methods with respect
to their ability to efficiently utilize space when increasing number of GPU devices is em-
ployed. Considering the fact that the represented average is taken over all tested models, we
can conclusively state that the 2nd method can be used to partition a wide variety of graphs,
not necessarily limiting its potential competence to model checking graphs. Since we are ex-
ecuting our experiments on a machine with two GPU devices, the two Figures 5.7a and 5.7b
represent only the state space partitioning part of the model checking. As they only speak
about space complexity, however, this is only a noteworthy comment.

In Figure 5.8 we only provide runtimes of algorithms containing the second method of
graph partitioning as it was shown in [8] to be only negligibly slower while considerably
more space efficient. The figure compares both dual CUDA algorithms and their single de-
vice counterparts. We have detached the adjacency list preparation from the comparison for
two reason: to make the differences more apparent and since the state space of some of the
models could not be generated on our CUDA-equipped workstation.

The reader should also be aware that the initialization time of every run contains cer-
tain non-trivial overhead (approximately 5 seconds). We have observed that this overhead is
caused by serialization of allocation requests among the two devices. With this knowledge it
seems reasonable to state that the slowdown (of dual CUDA computation) caused by inter-
CUDA communication is acceptable, especially considering how much time the adjacency
list preparation takes.
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Figure 5.8: The comparison of the single CUDA and the dual CUDA algorithms on all mod-
els (two of which cannot be verified using a single device).

Unlike the OWCTY algorithm, whose multi-device version requires seemingly constant
and small number of synchronization between devices, the MAP algorithm needs consider-
able more synchronizations for completion. This observation illustrates that not only is the
OWCTY algorithm insensitive to vertex ordering, it also has a potential to effectively ignore
partitioning of the graph. The only exception from this conclusion is the brp model on which
the OWCTY algorithm had to perform an exceeding amount of eliminations before reaching
the fixpoint.

5.6 Conclusions

In this chapter, we provided a summary of the latest advancements in GPU acceleration of
the LTL model checking. We examined the two main bottlenecks of the proposed methods.
The first one is that the preparation of adjacency list representation of the models is overly
costly thus preventing effective acceleration. The second one is that the size of the models is
constrained by the limited GPU memory. Subsequently, we demonstrated how to overcome
these weaknesses.

We designed a parallel multi-core construction of the adjacency list allowing for signifi-
cant efficiency improvement of the proposed CUDA LTL model checking algorithm. We also
established successful employment of multiple GPU devices to verify considerably larger in-
stances of model checking problems while preserving significant speedup. We showed that
the expensive communication among particular GPU devices and CPU imposed by indi-
vidual synchronizations leads to only negligible slowdown. These new approaches can be
effectively employed on modern multi-core machines equipped with multiple GPU devices.

Furthermore, we provided a detailed experimental evaluation of our approach and com-
parison with state-of-the-art model checkers. The experiments show that in the case when
model checking is used for falsification (the model is invalid, i.e. an accepting cycle is present
in the graph) the methods based on DFS exploration of the state space are thriving. The DFS
exploration usually locates the part of the state space where an accepting cycle is present
much earlier than BFS exploration. Therefore, a significantly smaller part of the state space
has to be generated. This leads to substantial acceleration of the whole model checking pro-
cedure. On the other hand, this limits the potential of GPU acceleration of accepting cycle
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detection (the other part of the model checking procedure), since the detection is executed
on a small input graph and thus forms only a negligible part of the overall computation.

In the case model checking is used for verification (i.e. no accepting cycle is present in
the graph), the exploration strategy has no impact since the whole state space has to be gen-
erated. For this reason the performance of accepting cycle detection plays a role of equal
importance to that of state space generation. Hence, the GPU acceleration of accepting cy-
cle detection has a chance to significantly speedup the computation. Also, the experiments
show that the performance of the GPU accelerated MAP algorithm deeply depends on the
ordering in the adjacency list representation and thus it is not as suitable for model checking
as the GPU accelerated OWCTY algorithm.

All together it seems that the multi-core state space generation based on shared hash-
tables and DFS exploration together with the GPU accelerated OWCTY algorithm for ac-
cepting cycle detection leads to the best result among the state-of-the-art shared memory
model checkers. Even though there were many models in our experiments on which the
LTSmin exceeded the performance of DiVinE-CUDA, they were exclusively instances of
invalid models. If the intended use of the model checker is verification of correctness of
the system instead of falsification, the reported results suggest to employ either DiVinE or
DiVinE-CUDA, based on the hardware the user has available.

In the future work we would like to put significant effort in designing GPU accelerated
state space generation and adjacency list computation which can lead to additional speedup
of model checking procedure and which we consider to be the next challenge for the parallel
model checking community.
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Chapter 6

Data-Parallel Decomposition into Strongly Connected Components

In this chapter we focus on the problem of decomposing a directed graph into its strongly
connected components (SCC decomposition). This problem has many applications leading
to very large graphs and requiring high performance processing. One example is the web
analysis based on web archives, such as topic tracking, time-frequency analysis of blog post-
ings, and web community extraction. A particular application we also have in mind is auto-
mated verification of software (model checking, dataflow analysis, bad cycle detection, etc.),
where SCC decomposition is typically used as a sub-procedure and its fast performance is
crucial for assuring overall efficiency of verification tools. Several parallel algorithms for
SCC decomposition have been proposed [58, 96, 25, 24], however data-parallel algorithms
allowing for efficient utilization of SIMD architectures have not been considered so far.

Parallel SCC decomposition is a particularly tricky problem. The reason is that the opti-
mal sequential algorithm strongly relies on the depth-first search post ordering of vertices
whose computation is known to be P-complete [101] and thus, difficult to be computed in
parallel. Hence, different approaches suitable for parallel processing have been considered.
See e.g. [60, 47, 2] for algorithm that works in O(log2n) time, but requires O(n2.376) parallel
processors, or [111] for randomized parallel algorithm for the problem.

We show how existing parallel SCC decomposition algorithms can be modified in order
to be accelerated on a vector processing SIMD architecture. In particular, we decompose
the algorithms into primitive data-parallel graph operations, design a new CUDA-aware
procedure for pivot selection and reformulate the recursion present in the algorithms by
means of iterative procedures.

We experimentally demonstrate that with a single GTX 480 GPU we were able to gain
speedup ranging from 5 to 40 when compared to the optimal sequential TARJAN’S algorithm.

6.1 Parallel Algorithms for Strongly Connected Component Decomposition

First, we describe in more details the basic ideas behind the parallel SCC decomposition
algorithms. These algorithms (similarly as parallel algorithm for accepting cycle detection)
were also designed assuming parallelism provided by shared-memory multi-core or distrib-
uted-memory architectures, and therefore they need to be redesigned in order to efficiently
utilized from SIMD architecture parallelism. We refer readers to original papers for the
proofs of correctness and time complexity of the algorithms.

6.1.1 FORWARD-BACKWARD Algorithm

The FORWARD-BACKWARD (FB) algorithm [58] introduces the basic concept that all the other
presented algorithms build on. The algorithm proceeds as follows. A vertex called pivot is
selected and the strongly connected component the pivot belongs to is computed as the
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Figure 6.1: FB decomposition of the graph into the independent subgraphs

Algorithm 17: CPU FB algorithm

Input : directed graph G = (V, E)
Output: strongly connected component decomposition of G

1 Procedure FB(V )
2 begin
3 pivot← PIVOTSELECTION(V )
4 F← FORWARDREACHABILITY(pivot, V )
5 B← BACKWARDREACHABILITY(pivot, V )
6 F ∩ B is SCC
7 in parallel do
8 FB(F \ B)
9 FB(B \ F)

10 FB(V \ (F ∪ B))

intersection of the forward and backward closure of the pivot. Computation of the closures
divides the graph into four subgraphs that all respect strongly connected components. These
subgraphs are 1) the strongly connected component with the pivot, 2) the subgraph given
by vertices in the forward closure but not in the backward closure, 3) the subgraph given
by vertices in the backward closure but not in the forward closure, and 4) the subgraph
given by vertices that are neither in the forward nor in the backward closure (see Figure 6.1).
The subgraphs that do not contain the pivot form three independent instances of the same
problem, and therefore, they are recursively processed in parallel with the same algorithm.
The pseudo-code of the algorithm is listed as Algorithm 17.

The time complexity of the FB algorithm is O(n · (m + n)) since it performs O(m + n)
work to detect a single strongly connected component. Practical performance of the algo-
rithm may be further improved by performing elimination of leading and terminal trivial
strongly connected components – so called trimming [89]. The TRIMMING procedure builds
upon a topological sort elimination. The key idea is as follows. A vertex cannot be part of
a non-trivial strongly connected component if its in-degree (out-degree) is zero. Therefore,
such a vertex can be safely removed from the graph as a trivial SCC, before the pivot vertex
is selected and forward and backward closures are computed. The removal of a vertex may
render another vertex or vertices to have zero in-degree (out-degree). Therefore, the elimi-
nation is iteratively repeated until no more vertices with zero in-degree (out-degree) exist.
Only after that, the pivot is selected and the algorithm proceeds as stated above. Note that
the elimination procedure is also referred as the OWCTY elimination, see Subsection 4.1.2.
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Figure 6.2: COLORING decomposition of the graph into the independent subgraphs

Algorithm 18: CPU COLORING algorithm

Input : directed graph G = (V, E)
Output: strongly connected component decomposition of G

1 Procedure COLORING(V )
2 begin
3 if V 6= ∅ then
4 maxColorList, (Vk)k∈maxColorList ← FORWARDREACHABILITYMAXCOLOR(V )
5 for k ∈ maxColorList in parallel do
6 Bk ← BACKWARDREACHABILITY(k, Vk)
7 Bk is SCC
8 COLORING(Vk \Bk)

6.1.2 COLORING Algorithm

The main limitation of the FB algorithm is that it performs O(m+ n) work to detect a single
SCC. This may be rather expensive strategy if the graph contains many small but non-trivial
components. Completely opposite approach is taken in the COLORING algorithm [96]. It is
capable of detecting many strongly connected components in a single recursion step, how-
ever, for the price ofO(n·(m+n)) procedure. Therefore, the time complexity of the algorithm
isO((l+1)·n·(m+n)) where l is the longest path in the component graph ofG. The idea of the
algorithm relies on the propagation of unique and totally ordered identifiers (colors) associ-
ated with vertices. Initially, each vertex keeps its own color. The colors are then iteratively
propagated along edges of the graph (line 4) so that each vertex keeps only the maximum
color among the initial color and colors that have been propagated into it (maximal preced-
ing color). After a fixpoint is reached (no color update is possible), the colors associated with
vertices partition the graph into multiple component respecting subgraphs (see Figure 6.2).
All vertices of a subgraph are reachable from the vertex whose color is associated with ver-
tices in the subgraph, and this vertex lies in the leading strongly connected component of
the subgraph. Therefore, the related component can be identified by computing a backward
closure of the vertex restricted to the subgraph. This is what the algorithm does for all the
subgraphs in parallel prior the recursion step (see Algorithm 18). Note that the propagation
procedure is rather expensive if there are multiple large components in the graph [23].
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Figure 6.3: OBF decomposition of the graph into the independent subgraphs

6.1.3 RECURSIVE OBF Algorithm

Similarly to the COLORING algorithm, also the OBF procedure [25] aims at decomposing the
graph in more than three component respecting subgraphs within a single recursion step.
However, unlike the COLORING algorithm, the price of the OBF procedure isO(m+n). The
name OBF is an acronym of the three procedures the algorithm comprises of: the OWCTY
elimination, the BACKWARD reachability, and the FORWARD reachability.

To identify the independent subgraphs (OBF slices in terminology of the RECURSIVE

OBF algorithm) of a rooted graph the procedure iteratively employs the following three
steps until the whole graph is processed (see Figure 6.3 and Algorithm 19):

O Apply the OWCTY elimination to remove leading trivial strongly connected compo-
nents (TRIMMING), and return vertices that were not eliminated, but some of their
immediate predecessors were.

B Compute backward closure of vertices returned in the previous O step, vertices in the
closure form a subgraph (slice) denoted by B.

F Compute forward closures of vertices returned in the previous O step within the sub-
graph given by B in order to remove the slice B from the graph. The immediate suc-
cessors of vertices inB that are outside B are identified as new initial states (Seeds) for
the rest of the graph.

Should the subgraphs be processed recursively by the RECURSIVE OBF algorithm [24, 23]
they first need to be split into rooted subgraphs. In the main loop of the algorithm (see
Algorithm 20) a vertex v from the set V is picked and computed its forward closure range in
the set V . Afterwards the OBF procedure (Algorithm 19) is executed on the vertex v and the
set range in parallel (line 9 of Algorithm 20). Vertices from V r range are processed in the
next iteration of the main loop.

Before the main loop of the OBF procedure is started the size of the set range is stored to
the variable originalRange in order to determine whether the found slice forms the SCC and
thus whether the recursion stops. The OWCTY elimination is executed to repeatedly elimi-
nate vertices with in-degree 0 reachable from seeds. Each of eliminated vertices forms trivial
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Algorithm 19: CPU OBF procedure

1 Procedure OBF-X(seeds, range)
2 begin
3 originalRange← |range|
4 while range 6= ∅ do
5 eliminated, reached, range← OWCTY(seeds, range)
6 All elements of eliminated are trivial SCCs
7 B← BACKWARDREACHABILITY(reached, range)
8 if |B| = originalRange then
9 B is SCC

10 else
11 in parallel do
12 RECURSIVE-OBF(B)

13 seeds← FORWARDREACHABILITYSEEDS(B, Range)

14 range← range \ B

Algorithm 20: CPU RECURSIVE-OBF algorithm

Input : directed graph G = (V, E)
Output: strongly connected component decomposition of G

1 Procedure RECURSIVE-OBF(V )
2 begin
3 while V 6= ∅ do
4 Pick a vertex v ∈ V
5 range← FORWARDREACHABILITY(v, V )
6 seeds← {v}
7 V ← V r range
8 in parallel do
9 OBF(seeds, range)

SCC and thus they are also removed from the set range. The OWCTY elimination returns
the set reached containing the vertices where the elimination has been stopped (vertices with
non-zero in-degree). Afterwards the backward closureB that forms a slice is computed from
the vertices in the set reached. If |B| = originalRange the sliceB forms the SCC and the OBF
procedure ends. Otherwise the RECURSIVE OBF algorithm is applied on the slice B recur-
sively. This nested invocation can run in parallel and thus it can increase parallelism. The set
of seeds for next iteration of the main loop of the OBF procedure is computed by the FOR-
WARDREACHABILITYSEEDS procedure (a trivial modification of the FORWARD reachability).
It returns all vertices from range that are immediate successors of vertices in the slice B but
do not belong to B. Vertices from range r B are processed in the next iteration of the main
loop. The time complexity of the RECURSIVE OBF algorithm is O((l + 1) · (m + n)) where l
is the longest path in the component graph of G.
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Algorithm 21: GPU TRIMMINGKERNEL – device code (run in parallel ∀v ∈ V )

Input : gAe, gAi, gElim, fixPointFound

1 if gElim[v] = false then
2 eliminate← true
3 if ∃u ∈ succ(v) : gElim[u] = false then

// succ(v) = {gAe[gAi[v]], . . . , gAe[gAi[v + 1]]}
4 eliminate← false

5 if eliminate = true then
6 gElim[v], fixPointFound← true,false

6.2 Data-Parallel Graph Primitives

Instead of trying to devise a completely new algorithm for SCC decomposition that would
be primarily suited for the CUDA architecture, we decided for a different course of ac-
tion. And that not to change the provably correct layout of the existing parallel algorithms,
but instead force both the underlying graph representation and the incorporated primitive
graph operations to assume and enable vector processing. Hence once the representation
and graph primitives (we are adopting both concept and name from numerical vector prim-
itives from [27] for graph related setting) are prepared, we may start building the respective
algorithms with relative ease.

The core graph primitive used in all of the algorithms is the computation of the forward
and the backward reachability. The data-parallel version of the forward and the backward
reachability was described in Section 3.2. Note that for the backward reachability we employ
the method based on the graph transposition that has larger memory demands but it is more
time efficient. Assume that the result of the computation of a reachability procedure is a
vector visited of |V | bits indicating which of the vertices have been visited. Initially, only the
bits for the vertices of which reachability should be computed are set to one.

As explained in the previous section, some algorithms employ the TRIMMING procedure
to efficiently deal with leading and terminal trivial SCCs. The goal of the procedure is to it-
eratively identify vertices of the underlying subgraph that have no immediate predecessors
(in the case of leading components) or immediate successors (in the case of terminal com-
ponents). Such vertices may be iteratively removed from the subgraph as trivial SCCs. Since
we store both forward and backward edges the data-parallel version of the TRIMMING pro-
cedure is very simple (in contrast to the data-parallel version of the ELIMINATION procedure
with the scope of the OWCTY algorithm where only the forward edges are stored 4.3). The
host code of the TRIMMING procedure is quite similar to the host code of forward reachability
(listed as Algorithm 4) and therefore we list only the TRIMMING kernel for iterative elimi-
nation of vertices with no immediate successors, see Algorithm 21. Note that in the case of
iterative elimination of vertices with no immediate predecessors the algorithm uses the back-
ward edges. Again we can assume that the result of the procedure is a vector eliminated of
|V | bits indicating which of the vertices have been eliminated. Also note that the TRIMMING

procedure can be easily augmented also to eliminate SCCs made of a single vertex with a
self-loop by simply ignoring the self-loop edges.

Quite often, the computation of the reachability or the elimination needs to be restricted
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to a subgraph. To that end we denote each subgraph with a unique number and use other
date structures of size O(|V |) to identify the subgraph each vertex belongs to. The thread in
the kernel then updates the presence bit of a successor only if it is a part of the same subgraph
as the source vertex. In the rest of the chapter we will use an equivalence relation∼ to denote
that two vertices are part of the same subgraph, and [x] to denote vertices equivalent to a
vertex x, i.e. [x] = {v ∈ V | x ∼ v}.

6.3 Pivot Selection

There are several stages of the algorithms that require a single vertex to be chosen within
a processed subgraph – the so-called pivot. Since pivot selection is a key graph primitive
it plays significant role in practical performance of the algorithms. As a good heuristics to
pivot selection the algorithms typically rely on a pseudo-random number generator. In our
approach, we not only need to select a single pivot, but since we share kernels for graph
procedures over multiple subgraphs, we need to choose a number of pivots, one for each
subgraph. To that end, the usage of a random number generator seems inappropriate as we
cannot guarantee that after a repeated random selection, the selected vertices will satisfy the
desired distribution.

We have, therefore, opted for a different solution. The basic idea of our pivot selection
is to let all vertices of a subgraph concurrently write their own unique identifiers to a sin-
gle memory location. After that the location keeps a single value that identifies the pivot.
Surprisingly, the most challenging problem when implementing the idea was where to de-
fine/store the memory location for a subgraph. Note that within a single kernel we may
select pivots for quite a large number of subgraphs.

To solve the problem we employed the observation that a subgraph when defined is fully
contained within a parent subgraph (the part of the graph from whose subgraphs the pivots
are voted). For our first solution to the problem suppose now that the pivot of the parent
subgraph has an extra space allocated to it. Then all the child subgraphs may be learnt about
the pivot of their parent subgraph and thus they may use the extra space allocated to the
parent subgraph pivot as the memory location they need for their own pivot selection. If
there are multiple child subgraphs of one parent subgraph then they are serialized for the
usage of the memory location. Since we do not know in advance which vertices become
pivots, we reserve extra space for every vertex. This requires at least |V |size(v) additional
space, where size(v) is the space necessary for identification of a single vertex.

In our second approach to the problem we have allocated a single shared vector of mem-
ory locations and make sure that every computed subgraph gets a unique pointer to the
vector. If each recursive step defines bounded number of subgraphs, we can compute the
unique number of a child subgraph from the unique number associated with the parent sub-
graph. For example, in the case of the FB algorithm, the bound is equal to three, so the three
new subgraphs of a parent subgraph with unique number i will get numbers 3i + 0, 3i + 1,
and 3i + 2. An obvious problem of the second solution is that the number of subgraphs is
unknown in advance, hence the unique numbers associated with the subgraphs may grow
beyond the size of the preallocated vector. Note that if that happens a lot of unique numbers
of subgraphs that were parent subgraphs before, are unused. We therefore postpone the com-
putation of the algorithm and run a heuristics that renumbers active subgraphs so that they
get numbers somewhere at the beginning of the vector. To compute new unique numbers of
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active subgraphs we employ hash function. Collisions due to the hash function are relatively
rare, and they are handled sequentially after the renumbering by the hash function.

6.4 Processing of Independent Subgraphs and Kernel Sharing

Within the scope of SCC decomposition the computation of forward or backward closures
are typically restricted to a particular component respecting subgraph of the original graph.
As soon as the algorithm is deeper in its recursion, the same procedures are typically ex-
ecuted over different subgraphs. If each operation such as the computation of a forward
closure, is implemented as a CUDA kernel, we can easily mimic the recursion as suggested
by the algorithms within the host code (we let the host code call a separate kernel for each
graph operation over every subgraph in every recursion branch). However, if a kernel is ex-
ecuted in this approach over a whole matrix, a lot of CUDA threads, namely those that are
deployed for vertices out of the processed subgraph, are idling or performing useless work.
We can avoid this inefficiency if we deploy only the threads for vertices of the subgraph, but
to be able to do so we would have to renumber the vertices of the graph so that the vertices
of the subgraph are well-distributed in the vector of vertices, i.e. at least in a number of con-
tinuous blocks. This renumbering would of course kill any benefit the preprocessing might
have brought.

We therefore proceed in a different way and share the calls to the kernels that are made
for the same operation over different subgraphs in different recursion branches. In partic-
ular, if we synchronize the recursion of the algorithm so that in the second recursion step,
let us say, the computation of a forward closure is executed simultaneously over multiple
independent subgraphs, we can employ a single CUDA kernel to compute all the forward
closures at the same time. This synchronization over recursion deepening and kernel shar-
ing principles allow us to reformulate the recursion present in the algorithms by means of
iterative procedures (while loops). This is exemplified on pseudo-code for the FB algorithm
listed in Algorithm 22 (though the idea is common to all implemented algorithms). Accord-
ing to our experience the penalty for explicit synchronization due to loop iterations is easily
outweighed by performance gain achieved due to the kernel sharing.

6.5 Designing CUDA Accelerated Algorithms Using Graph Primitives

We have prepared all the representation details and graph primitives to be applied on graphs
divided potentially into multiple subgraphs. Thus the idea foreshadowed above of mapping
the recursive nature of the presented algorithms into iterative processing, enables us to im-
plement the algorithms on various vector models of computation, e.g. on the heterogeneous
model (presented in Section 2.1) that all CUDA-equipped off-the-shelf computers possess.

As we describe in Section 3.2 the general work-flow of GPU accelerated graph algorithms
is the combination of out-of-order CPU and data-parallel processing GPU and requires to
create the complete representation of the graph. In the context of SCC decomposition we
assume that the complete representation of the graph G and the transposed graph GT is
given in advance. For the sake of simplicity we do not list in the following pseudo-codes the
initial transfer of the representation to GPU and final transfer of the result back to CPU. All
procedures that are called transfer only a bit indication whether a fixpoint has been reached
(see Section 3.2 for more details).
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Algorithm 22: GPU FB algorithm - host code

Input : directed graph G = (V, E)
Output: strongly connected component decomposition of G
Data : u ∼ v ⇔ range[u] = range[v]

1 INIT(pivots, range, visited, eliminated, terminate)
2 while terminate = false do
3 FORWARDREACHABILITY(G, pivots, visited.f)
4 BACKWARDREACHABILITY(G, pivots, visited.f)
5 TRIMMING(G, eliminated)
6 PIVOTSELECTION(pivots, range, visited, eliminated)
7 UPDATE(range, visited, eliminated, terminate)

Algorithm 23: GPU COLORING algorithm - host code

Input : directed graph G = (V, E)
Output: strongly connected component decomposition of G
Data : u ∼ v ⇔ oldMaps[u] = oldMaps[v]

1 INIT(pivots, maps, oldMaps, visited, terminate)
2 while terminate = false do
3 COLORINGPROPAGATION(G,pivots, maps, oldMaps)
4 BACKWARDREACHABILITY(G, pivots, maps, visited)
5 UPDATE(pivots, maps, oldMaps, visited, terminate)

6.5.1 CUDA Accelerated FORWARD-BACKWARD Algorithm

Once the algorithm is given as iterative procedure, the adaptation for CUDA environment
is rather straightforward. See the pseudo-code as listed in Algorithm 22. We are using the
vector visited to indicate which of the vertices belong to the forward respectively backward
closure (visited .f , visited .b), vector elim to keep the eliminated vertices and vector pivots to
determine the pivots for next iteration of the algorithm. Finally, the vector range is used
to identify the subgraph that each vertex belongs to. The UPDATE kernel recomputes the
range vector (the relation ∼) according to the vectors visited and elim . Moreover, it sets the
variable terminate to true if all vertices from previous iteration were either visited by both
the forward and backward reachability procedure, or were eliminated.

6.5.2 CUDA Accelerated COLORING Algorithm

Likewise the FB algorithm, also the COLORING algorithm can be formulated as an itera-
tive algorithm. In such a case every loop iteration consists of two procedures: the color-
propagation procedure that partitions the graph into multiple subgraphs, and the backward
reachability procedure that identifies and removes the leading component of every sub-
graph. We list pseudo-codes of the host code of the COLORING algorithm and the CUDA
kernel for the color propagation, see Algorithm 23 and Algorithm 24, respectively. Note
that the host code of the color propagation has the similar structure to the host code of the
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Algorithm 24: GPU COLORINGKERNEL – device code (run in parallel ∀v ∈ V )

Input : gAe, gAi, gMaps, inner

1 gMaps[v]← max{v, gMaps[v]}
2 foreach u ∈ succ(v) do // succ(v) = {gAe[gAi[v]], . . . , gAe[gAi[v + 1]]}
3 if v ∼ u ∧ gMaps[v] < gMaps[u] then
4 gMaps[v], inner← gMaps[u], true

5 if gMaps[v] = v then
6 gP ivots[v]← true

Algorithm 25: GPU OBF algorithm - host code

Input : directed graph G = (V, E)
Output: strongly connected component decomposition of G
Data : u ∼ v ⇔ range[u] = range[v]

1 INIT(phase, range, eliminated, terminate)
2 while terminate = false do
3 while INTERRUPTION(i) = false do
4 OBFKERNEL(O,B,F, V )

5 if phase[i] ∈ O then
6 UPDATEO(i)

7 if phase[i] ∈ F then
8 UPDATEF(i)

9 if phase[i] ∈ B then
10 UPDATEB(i)

11 UPDATE(range, eliminated, terminate)

FORWARDREACHABILITY procedure listed as Algorithm 4. Also note that the color propaga-
tion procedure computes the vertex (pivot) for the succeeding backward reachability proce-
dure, and that variable inner is used to detect that no fixpoint has been reached yet.

6.5.3 CUDA Accelerated RECURSIVE OBF Algorithm

Unlike the FB and the COLORING algorithms, the adaptation of the OBF algorithm to the
CUDA environment was more involved. In our final solution, we have decided not to use
three independent CUDA kernels for individual phases (O, B, and F ), but instead we have
devised a single CUDA kernel that performs all three phases at the same time. Every vertex
keeps extra information to know in which phase it is currently processed. The host code and
the device code of the OBF algorithm are listed as Algorithm 25 and 26, respectively.

OBF-KERNEL proceeds until one of the phases terminates, which is detected by the IN-
TERRUPTION procedure. After the termination, vertex i is returned to identify the subgraph
of the phase that has terminated and caused the interruption. An update procedure is then
executed according to the type of the phase:
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Algorithm 26: GPU OBFKERNEL – device code (run in parallel ∀v ∈ V )

Input : gAe, gAi, gTransAe, gTransAi, gReach, gElim, gPhase

1 if gPhase[v] = O ∧ gReach.o[v] = true then
2 if ∀u ∈ pred(v).u ∼ v : gElim[u] = true then

// pred(v) = {gTransAe[gTransAi[v]], . . . , gTransAe[gTransAi[v + 1]]}
3 foreach w ∈ succ(v) do // succ(v) = {gAe[gAi[v]], . . . , gAe[gAi[v + 1]]}
4 gReach.o[w]← true

5 gElim[v]← true

6 else if gPhase[v] = B then
7 foreach u ∈ pred(v) do
8 gReach.b[u]← true

9 else
10 foreach u ∈ succ(v) do
11 gReach.f [u]← true

• UPDATE O updates not eliminated vertices of [i] to be processed by the next phase (B).

• UPDATE B checks whether the reached part of [i] is rooted. If so, range of vertices in
the reached part is set to a common unique value and the part is eliminated as a SCC.
If the reached part was not rooted, we select a pivot and execute a forward closure to
get a rooted subgraph. The phase of the rest of vertices in [i] is set back to O. We also
set reach.o[v] for every vertex v that is a successor of a reached vertex in [i].

• UPDATE F selects a pivot from the not reached part of [i] to start a new forward reacha-
bility there. Simultaneously the phase is set to O for the reached vertices and the pivot
of [i] is the only one set to reached. Finally, the two parts (reached and not reached)
are separated (within ∼) by setting the range of the reached vertices to a new unique
value.

The UPDATE procedure merely checks whether all the vertices were eliminated (either by
OWCTY or when found to be in a rooted subgraph by the UPDATE B procedure) and sets
the terminate variable accordingly.

It is clear to see that OBF-KERNEL forces the individual threads to perform different tasks
if their vertices fall into different sets. Which is in the opposition to one of the principles of
CUDA programming since all threads within any warp should at one time perform the
same instruction. This is of a little problem when the sets O, B, F (containing vertices in the
respective phases) are large and consist of consecutive vertices (meaning they are stored in
an uninterrupted row in the adjacency matrix representation), but as they grow smaller or
less compact it might entail considerable slowdown.

We have tried to at least partially eliminate this problem by opting out subgraphs that
are too small. Once the size of a subgraph drops below a given threshold, we employed the
COLORING algorithm to finish the decomposition of the subgraph. In order to do so, we
had to adapt the OBF algorithm to compute the sizes of the produced subgraphs. Once all
the subgraphs are small enough we actually stop the OBF algorithm and continue with the
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COLORING algorithm. Despite the inevitable overhead of the size computation, this strategy
often lead to significant improvement according to our experimental measurements. Fur-
thermore, OBF can be augmented with an initial call to the TRIMMING procedure in order to
avoid the costly OBF-like computation on all the leading and terminal trivial components.

6.5.4 Employing Multiple CUDA Devices

CUDA technology provides tremendous computing power due to the massive parallelism,
however, with limited memory resources. As such its applicability to SCC decomposition is
limited by the size of the graph that can fit the memory of a single CUDA device.

In Section 5.2 we show how to efficiently employ multiple CUDA devices to solve the ac-
cepting cycle detection problem. More precisely, we were able to distribute computation of
various elementary graph algorithms among multiple GPUs and alter the underlying graph
representation to successfully overcome the space limitation. And even though our paral-
lel algorithm was quite inter-CUDA communication intensive, we were able to preserve a
decent time efficiency of the whole parallel system.

It is worthy to observe that accepting cycle detection and SCC decomposition algorithms
both use the same elementary graph procedures like reachability computation or unique and
totally order identifiers propagation. Thus is seems tractable, due to the idea of building SCC
decomposition algorithms from graph primitives, to follow the same process of devising
multi GPU implementation as presented in Section 5.2.

6.6 Experimental Evaluation

We compare the performance of the described CUDA algorithms with the CPU implemen-
tation of TARJAN’S algorithm that is considered to be the best sequential algorithm for SCC
decomposition. For this purpose we have implemented our own highly optimized version
of TARJAN’S algorithm using identical representation of adjacency list as the one used for
CUDA computation. Our implementation of TARJAN’S algorithm outperforms (2 times) the
Boost [31] implementation.

We have also implemented multi-core versions of the algorithms for the standard parallel
shared-memory platforms. To that end we have experimented with two implementations.
In the first variant, we basically let CPU cores perform the CUDA version of each algorithm
without employing CUDA device. In the second version, we took the approach of parallel
distributed-memory graph traversal procedures, see e.g. [23], and we applied it to shared-
memory environment. For the shared-memory message passing we used lock-free FIFO data
structures, as suggested in [12]. Unfortunately, none of our implementations were able to
outperform TARJAN’S algorithm using quad-core architecture, which can be explained by
extremely cache-efficient representation of the graph used for TARJAN’S algorithm that was
used on relatively small graphs (we have experimented with graphs whose representation
fitted 1.5 GB of RAM of our CUDA GPU card). All the experiments were run on a Linux
workstation with an AMD Phenom(tm) II X4 940 Processor @ 3GHz, 8 GB DDR2 @ 1066 MHz
RAM and NVIDIA GeForce GTX 480 GPU providing 480 cores and 1.5 GB of GPU memory.
In order to explore the scalability of the data-parallel algorithms we also use the previous
generation of GPU i.e. GeForce GTX 240 GPU providing 240 cores and 1 GB of memory.

To evaluate the algorithms we used input graphs as generated by Georgia Tech. graph
generator (GTgraph) [5] containing: Scalable Synthetic Compact Applications (SSCA) bench-

68



6. DATA-PARALLEL DECOMPOSITION INTO STRONGLY CONNECTED COMPONENTS

 10

 100

 1000

 10000

 1  2  3  4  5  6  7  8

T
im

e 
(m

se
c.

)

Number of vertices in millions (average degree 12)

CPU REACH
CUDA REACH

TARJAN’S
FB

COLORING
OBF

Figure 6.4: Runtimes for Random graphs in milliseconds.

mark suite [4], Recursive Matrix (R-MAT) generator [40], Erdös-Rényi random graph gen-
erator; and graphs as produced by the enumerative model checker DiVinE [16]. Since all
algorithms use the identical representation of the graphs, we do not take the time of its con-
struction into account for the experimental evaluation.

We provide comparison of the following algorithms: the serial CPU-based forward reach-
ability denoted by CPU REACH, the CUDA-based forward reachability denoted by CUDA
REACH, TARJAN’S algorithm, the CUDA-based FB algorithm (+ TRIMMING), the CUDA-
based COLORING algorithm, and the CUDA-based OBF algorithm (+ TRIMMING, + COLOR-
ING, + TRIMMING and COLORING). Table 6.1 lists runtimes of the algorithms if executed on
the three types of synthetic graphs with average degree set to twelve and scaled up by the
number of vertices. Table 6.2 gives runtimes of the algorithms for graphs corresponding to
model checking problems. The runtimes are also plotted in Figures 6.4, 6.5, 6.6, and 6.7 using
the best time available among versions of individual parallel algorithms.

Note that the computation of the algorithms which has reached 50 seconds time limit
has been aborted and is marked in the tables by ’-’. Also note that the reported runtimes for
CUDA-based forward reachability exhibit similar values to the values reported in [62, 63].

Table 6.3 enumerates the difference in runtimes of the algorithms when executed on
the previous and current generation of NVIDIA graphics cards, i.e. GTX 280 and GTX 480.
Again, the dashes mean that the algorithm did not finish in time (50s) on some instances.
Examining the hardware specifications of the respective cards we see that the frequency of
individual computation cores was increased rather modestly (from 602 to 700 MHz) when
compared to doubling of the number of cores (from 240 to 480 cores). Bearing this in mind,
we may consider the observed speedup (closing to threefold in some instances) to be a wit-
ness of effective scalability of the presented data-parallel algorithms. The seeming super-
linear speedup is to be accredited to both the higher frequency and unprecedented cached
memory hierarchy.
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Random Graphs

Algorithm
Number of vertices in milions (Number of SCCs)

Total1M 2M 3M 4M 5M 6M 7M 8M
(16) (31) (30) (48) (61) (72) (97) (106)

CPU REACH 446 1135 1915 2712 3563 4440 5331 6479 26021
CUDA REACH 16 32 49 65 82 98 115 131 588

TARJAN’S 957 2825 3722 5195 6822 8443 10265 12169 50398
FB 39 85 127 183 243 309 384 456 1826

FB + TRIM 36 73 111 148 186 223 261 298 1336
COLORING 88 179 271 363 455 546 638 729 3269

OBF 56 125 190 272 354 435 580 690 2702
OBF + COL 62 129 196 284 372 459 620 741 2863
OBF + TRIM 81 165 249 334 418 502 586 671 3006

OBF + COL + TRIM 81 166 251 336 421 506 590 676 3027

R-MAT Graphs

Algorithm
Number of vertices in milions (Number of SCCs)

Total1M 2M 3M 4M 5M 6M 7M 8M
(0.48M) (0.97M) (0.97M) (1.9M) (1.0M) (2.0M) (2.9M) (3.9M)

CPU REACH 280 744 1484 1910 3060 3504 3921 4428 14903
CUDA REACH 16 31 49 64 83 99 114 128 584

TARJAN’S 785 1851 3230 4332 6171 7365 8529 9738 42001
FB - - - - - - - - -

FB + TRIM 36 74 134 158 241 281 305 329 1558
COLORING 87 180 324 367 548 659 660 745 3570

OBF - - - - - - - - -
OBF + COL - - - - - - - - -
OBF + TRIM 83 203 343 427 595 702 796 887 4036

OBF + COL + TRIM 80 197 305 405 513 618 728 827 3673

SSCA#2 Graphs

Algorithm
Number of vertices in milions (Number of SCCs)

Total1M 2M 3M 4M 5M 6M 7M 8M
(576) (1.1K) (1.7K) (2.2K) (2.8K) (3.4K) (4.0K) (4.4K)

CPU REACH 350 790 1274 1794 2319 2866 3451 4141 16985
CUDA REACH 31 65 110 135 195 223 261 316 1336

TARJAN’S 601 1313 2116 2973 3721 4565 5513 6377 27179
FB 299 833 2089 3003 5168 7702 8455 11483 39032

FB + TRIM 72 155 284 352 538 661 851 1046 3959
COLORING 1646 3483 6532 9373 14095 15511 17352 27020 95012

OBF 281 913 2008 3092 4872 6939 9401 11528 39034
OBF + COL 316 1025 2269 3536 5574 7964 10855 13223 44762
OBF + TRIM 143 310 532 724 989 1257 1539 1930 7424

OBF + COL + TRIM 140 294 481 646 859 1035 1328 1650 6433

Table 6.1: Runtimes for synthetic graphs in milliseconds. Average degree of the graphs is 12
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Figure 6.5: Runtimes for R-MAT graphs in milliseconds.

Model

Algorithm

CPU
REACH

CUDA
REACH

TARJA
N

’S
FB FB

+ TRIM
COLORIN

G

OBF OBF
+ COL

OBF
+ TRIM

OBF
+ COL

+ TRIM

leader-2
23 6 197 383 37 2 18 19 28 28(0.7M, 3.8M, 0.7M)

phils
29 3 287 20344 31 57 54 34 52 29(0.7M, 6.0M, 59K)

fisher
84 7 597 18206 54 106 175 76 185 84(2.5M, 13.8M, 81K)

anderson-2
100 20 774 - 83 459 115 132 90 93

(3.1M, 13.4M, 1.6M)
leader-1

129 30 582 7504 324 17 363 84 379 403(3.6M, 26.6M, 3.6M)
elevator-2

323 48 2437 145 147 3441 199 200 251 249(6.4M, 83.3M, 1)
anderson-1

325 43 2738 - 600 537 415 420 312 389(8.9M, 47.7M, 4.3M)
peterson

387 35 2740 13466 166 487 211 224 266 279(9.5M, 42.0M, 18K)
elevator-1

400 54 2933 - 1049 5969 1336 1370 1384 1375(8.6M, 89.4M, 2.0M)

Total 1800 246 13285 - 2491 13075 2886 2559 2947 2929

Table 6.2: Runtimes for model checking graphs in milliseconds. For each model we list in
brackets the number of vertices, edges and SCCs, respectively.
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Figure 6.6: Runtimes for SCCA#2 graphs in milliseconds.
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Finally, Table 6.4 gives the overall achieved speedup when the best time available among
versions of individual parallel algorithms is considered.
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Graph type GPU device
Algorithm

CUDA
FB

FB
COLORING OBF

OBF OBF OBF

REACH + TRIM + COL + TRIM + COL + TRIM

Random
GTX 280 1501 3980 2888 5205 5447 6274 5754 5763

GTX 480 588 1826 1336 3269 2702 2863 3006 3027

R-MAT
GTX 280 1651 - 3578 7496 - - 7120 7190

GTX 480 584 - 1558 3570 - - 4036 3673

SSCA#2
GTX 280 3923 78892 10245 135003 68040 102546 16625 15186

GTX 480 1336 39032 3959 95012 39034 44762 7424 6433

Model GTX 280 526 - 5188 23152 4604 4151 4344 4555

Checking GTX 480 246 - 2491 13075 2886 2559 2947 2929

Table 6.3: Runtimes in milliseconds summed over respective graph types for the previous
and current generation of GPUs.

Graph type GPU device
Speedup against Speedup against

CPU REACH TARJAN’S

CUDA REACH FB COLORING OBF

Random
GTX 280 17.3 17.5 9.7 9.2
GTX 480 44.3 37.7 15.4 18.7

R-MAT
GTX 280 9.0 11.7 5.6 5.9
GTX 480 25.5 27.0 11.8 11.4

SSCA#2
GTX 280 4.3 2.7 0.2 1.8
GTX 480 12.7 6.9 0.3 4.2

Model GTX 280 3.4 2.6 0.6 3.8
Checking GTX 480 7.3 5.3 1.0 5.6

Table 6.4: Overall achieved speedup for the previous and current generation of GPUs.

We have observed that the performance of CUDA-based algorithms deeply depends on
the average degree of the vertices in the graph. Simple reachability procedure (forward clo-
sure) performs in linear time with respect to the diameter of the graph, which tends to ex-
pand as the average degree decreases. For graphs with low degree, the performance of the
reachability procedure may be improved using our heuristics to reduce the number of mem-
ory loads, see Subsection 3.2. Generally, we observe that the scalability and efficiency of the
parallel reachability procedure effectively limits scalability and efficiency of the SCC decom-
position algorithms. We can conclusively state that in most experiments our algorithms were
able to reach this limit.

Other observations are as follows. For Random graphs, where most of the vertices have
similar degree, all algorithms significantly outperform (40 times) TARJAN’S algorithm as
they can effectively exploit the parallelism. R-MAT graphs have uneven degree distribution
with most vertices of rather a small degree. These graphs expand slowly in each iteration and
exhibit uneven load balancing and thus the performance of algorithms based on the compu-
tation of the forward reachability is very poor. However, adding the TRIMMING phase dras-
tically improves their performance and leads to overall twentyseven-fold speedup. SSCA
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graphs exhibit similar degree distribution to the R-MAT graphs, but they typically contain
large number of small non-trivial components, which limits the efficiency of the TRIMMING

procedure (overall seven-fold speedup). For model checking graphs, the average degree of
a vertex is rather small compared to the synthetic graphs, therefore the runtimes are not as
good as in the case of synthetic graphs (overall six-fold speedup).

For synthetic graphs, the FB algorithm with TRIMMING has the best times. This is be-
cause the graphs usually contain small number of large components and large number of
trivial or very small components. Such a structure of a graph causes the whole decompo-
sition process to boil down to a few invocations of the forward and backward reachability
interleaved with the TRIMMING procedure. On the other hand model-checking graphs con-
tain in general bigger number of large components. For graphs with such a structure the
OBF algorithm has the potential to significantly outperform the other ones. Finally, we ob-
serve that the COLORING algorithm exhibits rather unstable performance. While thriving on
highly disconnected graphs or graphs with many small components, its performance de-
grades as the size of the components in the graph grows.

6.7 Conclusions

In this chapter, we demonstrated successful redesign of several parallel algorithms for SCC
decomposition. The redesigned versions allow for computation acceleration on massively
parallel hardware platforms such as modern GPUs. In particular, we designed a new mas-
sively parallel procedure for pivot selection and reformulated the parallel SCC decompo-
sition algorithms in order to outperform the optimal but inherently sequential TARJAN’S

algorithm.
Thus while not proposing a strictly speaking new parallel algorithm for SCC decompo-

sition we instead suggest methods allowing to map the recursive nature of the presented
algorithms into iterative procedures. Hence instead of devising an ad-hoc solution for SCC
decomposition on CUDA we tried to establish more general approach to irregular graph
algorithms. This approach aims at enabling implementation of algorithms on various vec-
tor models of computation and propounds how could other graph algorithms be altered to
benefit from SIMD architecture.

We also carried out an extensive experimental evaluation of the known algorithms on
several types of graphs proving that with single GTX 480 GPU card we can easily outper-
form the optimal serial algorithm. The results imply that the FB algorithm is to be declared
a winner among the particular algorithms having speedup up to forty-fold and rarely go-
ing below six-fold. Though COLORING reaches surprisingly good results on some instances,
there are only a few of them. And finally despite achieving rather steady performance, the
OBF algorithm seems to fall behind the other algorithms. This is because the random graph
generators as used in our study fail to provide graphs with significant amount of nontriv-
ial and large components. Whether this is the case of all application domains is, however,
questionable.

In our future work, we intend to apply the recently proposed methods such as the warp-
centric programming [69] and the linear parallelization [91] (briefly described in Chapter 3)
to further accelerate the SCC decomposition on the massively parallel SIMD architectures
the modern GPUs offer.
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Chapter 7

Data-Parallel Algorithms for Optimal Cycle Mean Problem

In this chapter, we aim at optimal cycle mean (OCM) problem. As we discuss in Section 2.4,
inspection of graph cycles is one of the possible means to deal with performance prediction.
It is imperative that the process of finding the optimal cycles is not overly expensive since
many of these applications require the critical cycle to be found repeatedly [50]. To further
emphasize the necessity of having efficient algorithmic solution to this problem we present
two practical observations. The graphs representing even a small system can be exceedingly
large, containing millions of vertices. Moreover, the number of cycles can be exponential
with respect to the number of vertices thus making the trivial inspection of all cycles in the
graph impractical. Yet the asymptotic complexity of even the best sequential algorithms is
very high, which renders the applicability of OCM-based performance analysis limited to
small systems.

To the best of our knowledge, there exists only distributed-memory parallelization of
OCM algorithms [41]. Since distributed computation has led to rather moderate results, we
intend to improve the runtime of OCM computation and consequently the applicability of
OCM-based performance analysis by employment of SIMD parallelism offered by modern
GPUs.

7.1 Algorithms for Optimal Cycle Mean Problem

First, we describe in more details the basic ideas behind the algorithms for OCM problem.
We focus on parallelization of these algorithms and we choose the best candidate for our
new data-parallel algorithm.

In order to describe further details of some OCM algorithms we introduce the notion
of parametric weight functions. Given a weight function w and a real number Λ, we define

parametric weight function wΛ
df
= w − Λ. We say that Λ is feasible for a graph G if no cycle

in the graph has negative weight with respect to wΛ.
Now we will prove two very simple propositions that provide theoretical basis for OCM

algorithms. Recall that optimal cycle mean for a given graph G and weight function w is
denoted as µ∗.

Proposition 7.1.1. Λ is feasible⇔ Λ ≤ µ∗.

Proof. ⇒ Let ζc be any of the cycles with the optimal mean in G. Then wΛ(ζc) = w(ζc) −
Λ|ζc| ≥ 0 hence w(ζc) ≥ Λ|ζc| and w(ζc)

|ζc| = µ∗ ≥ Λ.
⇐ Let ζm be an arbitrary cycle in G such that wΛ(ζm) < 0. Then w(ζm) − Λ|ζm| < 0 and

thus Λ > w(ζm)
|ζm| = µ∗, which contradicts the assumption that Λ ≤ µ∗.

Proposition 7.1.2. Minimal cycle mean of G is equal to the smallest of minimal cycle means among
the strongly connected components of G.
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Proof. First we observe that the component graph Gc = (Ec, Vc) of G is acyclic: Let G1 =
(V1, E1), G2 = (V2, E2) ∈ Vc such that there is a cycle in Gc starting and ending in G1

and passing G2. Since every vertex is part of some strongly connected component, the sets
V1 and V2 are nonempty. Let v1, v2 be arbitrary vertices from V2, V2, respectively and let
< e1, . . . , en > be the path between G1 and G2 in Gc. The definition of strong connectiv-
ity implies existence of a path < e01, . . . , e0i0 , e1, . . . , en, en1, . . . , enin > in G between v1 and
v2. Dually, it is possible to show that there is also a path from v2 to v1. Hence V1 ∪ v2 together
with E ∩ (V1 ∪ v2)× (V1 ∪ v2) form a strongly connected component of G which contradicts
the maximality of V1.

Thus it is obvious that cycles inG are only within its strongly connected components and
by finding the smallest among the minimal mean cycles of the strongly connected compo-
nents we also find minimal mean cycle of G.

Through the course of study of optimal properties of graph cycles a plethora of algo-
rithms emerged. These algorithms, while not sharing similar concepts, can be divided into
several groups according to what graph property they use to find critical cycles. Since our
goal in this section is to choose one of the algorithms which would be most suitable for
data-parallel implementation we will describe all three categories of OCM algorithms and
consider their aptness for our purpose.

There are various limitations imposed on the potential algorithms should they be even
considered for SIMD acceleration. First of all, the data structures used must be to a very large
extend in form of vectors: stacks, queues or heaps are not suitable for effective SIMD paral-
lelization. Then the kernels should prevalently address the whole set of vertices (or edges):
limiting the computation to an insufficiently small subset would prevent utilization of the
computational power. Yet the vector-wide operations are rather costly even on many-core
architectures and the complexity of the algorithm is practically measurable in their number.
Finally, there is also a non-negligible overhead of kernel calls and thus even a very fast kernel
should not be run excessively.

A strong relation can be observed between the OCM and the Shortest Path Feasibility
(SPF) problems [50]. This relation should be much more apparent once we formulate the
OCM problem as a linear programming problem: µ∗ is the optimal solution of

max r subject to
d(v) ≤ d((u) + (w((u, v))− r)
∀e = (u, v) ∈ E,

(7.1)

where d stand for distance, i.e. minimal-cost path from the source node to v. According to the
previous formulation, we can equivalently search for the maximal parameter r such that G
with wr contains no negative cycle. Following Proposition 7.1.1 such r is exactly the optimal
cycle mean. As a result, existence of an efficient implementation of an SPF algorithm enables
an efficient solution to the OCM problem. Furthermore, any future improvements to an SPF
procedure automatically translates to improvements in this OCM problem solution.

All SPF algorithms have a common basic step: the scanning method [44]. This method
assumes we maintain for every vertex u its potential π(u), parent p(u), and a label S(u) ∈
{unreached, found, scanned}. Initially, only the root vertex is labeled found, all other ver-
tices are unreached, and potential of all vertices is set to zero. A single found vertex is then
repeatedly scanned using Algorithm 27.
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Algorithm 27: CPU Scanning Method of SPF algorithms

Input: A found vertex u

1 foreach e = (u, v) ∈ E do
2 if π(u) + w(e) < π(v) then
3 π(v), p(v), S(v)← π(u) + w(e), u, found

4 S(u)← scanned

The scanning method repeats until there is no found vertex or until the algorithm finishes
n passes. Recall that n = |V |. Passes of an SPF algorithm are defined inductively:

0-th pass is the initialization,

i-th pass scans all vertices labeled found during the (i− 1)st pass.

If all n passes are performed, the graph inevitably contains a negative cycle.

7.1.1 Cycle-Based

The arguably most straightforward application of shortest path feasibility solution to the
OCM problem is the cycle-based approach. The idea is to maintain an upper bound Λ of the
minimal cycle mean, i.e. Λ ≥ µ∗, and a cycle C such that Λ = µ(C). If Λ > µ∗ then new better
upper bound Λ′ of minimal mean cycle can be detected with the SPF algorithm provided
that it uses parametric weight function wΛ. The newly computed upper bound Λ′ is used in
the next iteration of the algorithm as Λ. The whole procedure repeats until no improvement
of upper bound can be found, which indicates that Λ = µ∗.

A classical implementation of the cycle-based approach is HOWARD’S algorithm [70],
which further improves the approach by altering the SPF procedure. At the end of each pass
it checks the parent graph, induced by edges (p(v), v), for cycles. Existence of a cycle allows
to restate Λ to a value that sets to zero the weight of the most negative cycle. Should there be
no negative cycle the improved SPF algorithm either terminates, if all reduced weights are
non-negative, or it continues with the next pass.

The asymptotic time complexity of cycle-based algorithms is exponential in the worst
case, e.g. HOWARD’S algorithm runs in timeO(nmN) [46], where N is the number of simple
cycles in G. In practice, however, these algorithms often surpass algorithms with known
polynomial bound on their time complexity.

The cycle-based approach seems to be fairly compatible with the SIMD computation.
Namely, the SPF subroutine is a vector-wide propagation of values, the minimal cycle loca-
tion on the parent graph is feasible to parallelize, and most importantly sequential experi-
ments suggest that the algorithm typically performs only very few passes of the underlying
SPF subroutine.

7.1.2 Binary Search

The binary search approach is slightly more involved. It maintains both upper and lower
bounds Λ1 ≤ µ∗ ≤ Λ2 together with a cycle C such that µ(C) = Λ2. The SPF subroutine is
repeatedly called with parametric weight function wΛ, where Λ, as the name suggests, is set
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to Λ1+Λ2
2 . In case a negative cycle ζ is found, we set C and Λ2 to ζ and µ(ζ), respectively.

Since we did not use Λ2 as a parameter we cannot be certain of the value of the optimal cycle
mean in either of SPF answers, and thus if no negative cycle is found we set Λ1 to Λ. The
termination criterion for binary search approach is Λ2 − Λ1 < ε. If ε is chosen sufficiently
small, C will be the critical cycle.

The well-known implementation of binary search is due to Lawler [81], who also proved
the runtime of his algorithm to be in O(nm lg(W/ε)), where W is the maximal edge weight.
Structurally, there is no apparent reason why LAWLER’S algorithm should be inappropriate
for data-parallelization, yet the fact that the SPF subroutine requires up to n passes (and
given the idea of binary search it often is necessary to carry out all n passes) renders this
particular approach unusable. This hypothesis was experimentally confirmed once we have
implemented LAWLER’S algorithms and executed preliminary tests.

7.1.3 Tree-Based

While the previous two approaches used full SPF, the tree-based approach uses the short-
est path feasibility subroutine only partially. Here only the lower bound Λ is maintained,
initially small enough to guarantee that all edges have positive weight under wΛ. Λ is pro-
gressively increased throughout the algorithm in correctly chosen increments, until a cycle ζ
is found such that wΛ(ζ) = 0. Apart from Λ we also maintain the shortest path tree T, with
respect to the current wΛ. As we are working with the augmented graph we may initiate T
to consist of the edges from s to every other vertex.

The increments of Λ must be chosen with care, otherwise minimal mean cycle could be
missed. A safe strategy is to set new value of Λ to the smallest λ ≥ Λ such that there is a
different T for wλ. To this end we assign to every vertex u a threshold, the smallest λ that
would force u to change parent. Finding smallest among all thresholds is facilitated by a
priority queue.

Thus the known implementations mainly differ in the specific priority queue they use:
there is a heap-based implementation due to Karp and Orlin [74] running in O(nm log n)
and a Fibonacci heap-based implementation due to Young, Tarjan and Orlin [112] running
in O(nm+ n2 log n) and further referenced as the YTO algorithm.

Again this approach is unsuitable for SIMD acceleration for several reasons. The usage of
priority queues (either heaps or Fibonacci heaps) is particularly problematic and would most
likely be implemented as a simple vector, with the minimum operation as parallel reduction.
Much larger problem was found during experiments with sequential version demonstrating
that there are simply too many iteration of the algorithm that must be carried out one after
another.

7.1.4 HOWARD’S Algorithm

Since it is HOWARD’S algorithm that appears to be the one most suitable for paralleliza-
tion, we will now provide its detailed description. First, we should stress that the algorithm
works on strongly connected graphs only. There exist two approaches how to overcome
this restriction. First, we can decompose the given graph to its strongly connected compo-
nents and then process the graph one component at a time. In the sequential case we can
use TARJAN’S algorithm [105] based on the depth-first traversal procedure which outputs
the list of all strongly connected component in O(n + m) time. Hence there is asymptoti-
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Algorithm 28: CPU HOWARD’S algorithm

Input : A directed, strongly-connected graph G = (V, E, w), w : E → Q
Output: λ ∈ Q : λ = µ∗(G)

1 foreach v ∈ V do
2 val0(v), π(v)← 0, nil

3 improved← true
4 i← 0
5 λ← 0
6 while improved do
7 improved← false
8 foreach v ∈ V do
9 val((i+1) mod 2)(v)← minu∈succ(v) {val(i mod 2)(u) + w(v, u)− λ}

10 if π(v) = nil ∨ (val(i mod 2)(π(v)) + w(v, π(v))− λ > val((i+1) mod 2)(v)) then
11 π(v)← u|val(i mod 2)(u) + w(v, u)− λ = val((i+1) mod 2)(v)
12 improved← true

13 i← i + 1
14 if improved then
15 c← MinMeanWeightCycle(Gπ) // Gπ.|E| = |V |,∀v ∈ V : deg(v) = 1
16 λ← µG(c)

17 break all other cycles than c in Gπ so that all vertices have path to c
18 s← MinVertex(c)
19 val(i mod 2)(s)← 0
20 q.push(s)

21 while ¬q.empty do
22 v← q.pop

23 foreach u ∈ pred(v) do
24 if u 6= s ∧ π(u) = v then
25 val(i mod 2)(u)← val(i mod 2)(v) + w(u, v)− λ
26 q.push(u)

27 return λ

cally no difference in complexity of the algorithm, although practically the difference can be
quite substantial. The second approach suggests to modify the underlying graph by adding
a Hamiltonian cycle ζH =< (v0, v1), . . . (vn−1, v0) > to the graph. With this modification the
graph becomes strongly connected and provided that weights of newly added edges are
sufficiently large, the optimal cycle mean of the graph will remain unchanged.

As stated in the description of the cycle-based approach, HOWARD’S algorithm (see Al-
gorithm 28, adopted from [41]) extends the shortest path feasibility algorithm. Indeed the
main cycle on lines 6–26 up to line 13 is in fact the SPF algorithm. Yet the output of the cycle
on lines 8–12 is not the shortest path tree, since we are approaching the optimal cycle mean
from top and hence there are cycles in our shortest path graph. To remain consistent with
the established notation we will call the graph induced on edges (v, π(v)) the policy graph.
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Apart from the successor in the policy graph π(v) that must exist since we are working
with strongly-connected graphs only, we also store two values val0(v) and val1(v) with every
vertex. In these two values we keep information about the current and the following para-
metric length for a given vertex. In every iteration we check whether there was a change in
the policy graph, and if not we interrupt the main cycle and return λ as the optimal cycle
mean. Each λ that is a parameter for the feasibility computation, is actually the mean weight
of a specific cycle in both the original and the policy graph. Hence, after every iteration of
the SPF algorithm part we inspect the policy graph, locate all cycles inside it and choose the
one with minimal mean weight (line 15). Upon finding the minimal cycle (or after choosing
one of the minimal cycles), we modify the policy graph in such a way that every vertex has
a path to the minimal cycle (line 17).

Lines 15 and 17 would perhaps require more detailed explanation. From the property of
the policy graph (every vertex has exactly one outgoing edge), we know that each of its con-
nected components consists of one cycle and potentially several paths leading to this cycle.
Finding all cycles can thus be done in linear time simply by following the successor path,
marking all visited vertices. Next we need to rebuild the policy graph so that the selected
cycle would be the only cycle there and every vertex has a path to that cycle. Moreover, it
is required for the component of the minimal cycle to remain unchanged, otherwise the SPF
subprocedure would always detect an improvement. This can be achieved by two consecu-
tive backward reachabilities: one to demarcate the component of the minimal cycle and the
other one to connect also the remaining vertices to the minimal cycle.

Subsequently, we choose one vertex (line 18) on the minimal cycle and set its val to zero.
It is necessary that we always select the same vertex, assuming the same cycle is found
minimal. Consequently, after the modification of the policy graph and selecting new λ, it is
also necessary to modify the val values for other vertices accordingly. This process is started
by setting the val of s to zero on line 19 and carried out by the cycle on lines 21–26, performing
backward reachability from s along the edges of the policy graph.

7.2 Data-Parallel Version of HOWARD’S Algorithm

The actual description of our data-parallel implementation of HOWARD’S algorithm will be
conducted in several steps. We start by proposing a high-level work-flow, where we attempt
to preserve the provably correct layout. Concurrently proposing graph primitive operations
that would perform actions functionally equivalent to those of the original algorithm, but,
wherever possible, addressing the whole vector of values at a time. CUDA-specific imple-
mentation of these graph primitives will be detailed extensively in the following section.
Finally, we propose an extension to HOWARD’S algorithm which prepends a parallel de-
composition to strongly connected components to the algorithm. Then we let the algorithm
perform the OCM computation on all components concurrently.

For the sake of simplicity we do not list in the following pseudo-code the initial transfer
of the representation to GPU. All procedures that are called transfer only a bit indicating
whether a fixpoint or a termination condition has been reached (see Section 3.2).

7.2.1 High-Level Description

The proposed host code of our implementation is listed as Algorithm 29. It is apparent that
lines 15 and 17 of Algorithm 28 that rebuild the policy graph, require much more attention
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Algorithm 29: GPU HOWARD’S algorithm – host code

Input : A directed, strongly-connected graph G = (V, E, w), w : E → Q
Output: λ ∈ Q : λ = µ∗(G)

1 while true do
2 terminate← SPFPASSITER(G, gV al, λ,Gπ, it)
3 if terminate = true then
4 break

5 it← it + 1
6 GPIPREPROCESS(Gπ, gPredInfo)
7 ELIMINATION∗(Gπ, gPredInfo)
8 CYCLEINDETIFICATION(Gπ, gCycles)
9 REDUCEmin(gCycles,minCycle)

10 λ← minCycle.mean
11 SETMINCYCLE(Gπ, gCycles,minCycle)
12 MARKMINCOMPONENT∗(Gπ, gPredInfo)
13 CONNECTGPI∗(G,Gπ)
14 gV al[it&1][minCycle.minIndex]← 0
15 GPIPREPROCESS(Gπ, gPredInfo)
16 VALUEPROPAGATE∗(GT , Gπ, gV al[it&1], λ,minCycle.minIndex, gPredInfo)

17 return

in the SIMD environment as it is the place most susceptible to inefficient processing. These
two lines of CPU pseudo-code span from line 6 to line 13 in our GPU implementation. We
first describe this part of the algorithm postponing the SPF subroutine for later discussion.

There are two calls to the GPIPREPROCESS kernel (on lines 6 and 15) and they both serve
the same purpose to gather information about predecessors in the policy graph. This step
is merely an optimization speeding up the kernels that perform the backward reachability
(or its modification). It would be possible to omit this kernel for the same reasons as it is
possible to perform backward reachability using only forward edges (see Section 3.2.1). Yet
the speedup gained from employing this kernel is quite considerable even though we have
to call it twice as the graph is rebuild in the CONNECTGPI kernel. The first call is because of
the ELIMINATION and the MARKMINCOMPONENT kernel, the second call is because of the
VALUEPROPAGATE kernel.

From the description of sequential HOWARD’S algorithm we know that the policy graph
consists of weakly connected components, each containing a cycle and several paths leading
to this cycle. In order to be able to find all cycles in the policy graph in as few parallel steps
as possible, we first apply ELIMINATION to remove all vertices that do not lie on a cycle.
This kernel is called iteratively (every call removes the vertices with no predecessors) until
a fixpoint is found, i.e. until there are no such vertices. There are more fixpoint kernels in
Algorithm 29 all marked with an asterisk. The elimination allows localization of cycles and
computation of their means in a straightforward manner (line 8). The minimal among them
can subsequently be found by employing parallel reduction [42] with min operation.

Upon finding the cycle with minimal mean (which has to be agreed on by all vertices on
line 11) we can start rebuilding the graph. With the first backward reachability (line 12) we
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undo the elimination of vertices within the component of the minimal cycle, hence the sec-
ond backward reachability (line 13) is started from this component and is iteratively applied
until all vertices are connected, one breadth-first search layer at a time.

Finally, the SPF subprocedure is easy to parallelize. Using two val vectors (denoted as
gV al) allows us to perform all updates of values in a single parallel step (as there is no danger
of race between threads, see line 2). Also realization of the VALUEPROPAGATE kernel on
line 16 that propagates the change of val from the vertex on minimal cycle with the smallest
index (source), was only a minor modification of backward reachability procedure.

7.2.2 Graph Primitives and Data Structures

Most of known OCM algorithms require to access predecessors of a given vertex in order
to perform a kind of backward reachability. Storing backward edges together with their for-
ward versions causes additional nontrivial memory requirements, which might be a prob-
lem as the size of CUDA memory is limited. We have shown how to carry out the backward
reachability using only forward edges with time overhead in Section 3.2.1. However, OCM
algorithms often require the reachability procedure to perform only on a given subgraph of
the whole graph. Unfortunately, augmenting the original procedure in order to follow only
selected edges resulted in considerable slow down in computation. For that reason we were
forced to explicitly store both forward and backward edges of the graph.

As mentioned before the amount of memory on a CUDA device may limit application of
CUDA accelerated algorithms to graphs of which representation fits the memory of the GPU.
Multiple CUDA-aware GPUs can be used to effectively extend available memory (see 5.2)
for the price of extensive modification of the source code and a certain slow down. Fortu-
nately, the memory limitation is not that restricting in the case of OCM algorithms as the
high asymptotic complexity of individual algorithms results in practical issues dealing with
long runtimes rather than a lack of memory space.

While most of our kernels are only minor modifications of data-parallel graph primitives
presented in the previous chapters, they are crucial for the overall efficiency of our data-
parallel implementation, and therefore, we describe some of those modifications in detail.
Prior to that we first focus on the data structures that are used during the computation. The
graph representation itself has been described in Section 3.1. In order to keep low space pro-
file, we store the policy graph Gπ (denoted as gAπ in the VALUEPROPAGATE kernel) in a
vector of n elements containing indices of Array Ae that uniquely specifies what edge leads
to the successor of a given vertex. Also the first few bits of every element are reserved to
flags. For example there is a flag marking what vertices have been removed during elimi-
nation. Cycles are stored in gCycles using two 32-bit values, one for the index of its source
vertex and second for the mean weight. Finally, the vector gPredInfo is used to store a par-
tial information about the predecessors within one 32-bit value. The first 16-bits are for the
number of predecessors and the last 16-bits for the local index of the first predecessor.

GPIPREPROCESS primitive was devised for a simple reason: there is no efficient way to
propagate along backward edges in the policy graph. It is approximately equally inefficient
to use forward edges (since we have to deploy as many threads as there are unseen ver-
tices) as to search among backward edges those in the policy graph (since there are often
many edges than do not belong to the policy graph). The improvement we have proposed
first passes the whole graph G storing correctly the information about predecessors into
gPredInfo. This preprocessing allows to virtually skip inspection of vertices with no prede-
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Algorithm 30: GPU VALUEPROPAGATE kernel – device code (run in parallel ∀v ∈ V )

Input : gTransAe, gTransAi, gAπ, gV al, λ, source, gPredInfo

1 prop← false
2 counter← gPredInfo[v].getNum()
3 pred← gTransAi[v + gPredInfo[v].getFirst()]
4 while counter > 0 do
5 edge← gTransAe[pred]
6 if v = gTransAe[gAπ[edge.to]] then
7 counter← counter− 1
8 if edge.to 6= source then
9 gV al[edge.to]← gV al[v] + edge.weight− λ

10 prop← true

11 pred← pred + 1

12 if prop then
13 fixPoint← false

cessors in the policy graph and also jump at the first edge that belongs to the policy graph
as can be observed from the pseudo-code of VALUEPROPAGATE in Algorithm 30. There we
store in the local variable counter the number of predecessor of the vertex assigned to this
thread (line 2) and can skip the cycle if counter is zero. Together with the jump to the first
actual predecessor (see line 3) this improvement alone has led to five-fold speedup of VAL-
UEPROPAGATE including the cost of preprocessing.

Details on remaining kernels are as follows. The ELIMINATION kernel is actually the
TRIMMING kernel (see Algorithms 21) augmented similarly as the VALUEPROPAGATE kernel
with the information about predecessors. A simple while loop (it is executed only on vertices
on some cycle) for identification of cycle source and its mean is implemented in the CYCLE-
IDENTIFICATION kernel. And finally the CONNECTGPI kernel performs backward reachabil-
ity from the component of the minimal cycle, and it utilizes a flag propagate which marks
the currently active breath-first layer and thus less threads needs to be dispatched.

7.2.3 SCC Decomposition Extension

There are several reasons why to prepend SCC decomposition before a CUDA accelerated
OCM algorithm. First of all, the algorithm requires the input graph to be strongly connected
and thus we have to add the Hamiltonian cycle. Not only is this operation costly, it also
adds more edges into the graph, further prolonging the computation. Furthermore, even
though the parallel algorithms for SCC decomposition have rather high asymptotic com-
plexity (O(n(n+m))), we were able to implement data-parallel SCC decomposition which is
considerably faster than the optimal sequential algorithm (see Chapter 6). And most impor-
tantly, it allows the computation to be executed concurrently on all SCC components, which
further improves the running time provided that the components are much smaller than the
whole graph.

The technique to run a kernel on multiple regions within a graph and to restrict its effect
to respective regions was thoroughly described in Section 6.4 and we will thus concentrate
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Algorithm 31: CPU Region-specific minimum voting

1 myCycle← (source,mean = (weight/length))
2 while true do
3 comCycle← cycles[ myRegion]
4 if comCycle.mean ≤ myCycle.mean then break
5 atomicCAS(&(cycles[ myRegion]), comCycle,myCycle)

on the parts related to computation over decomposed graphs specific for our OCM algo-
rithm. First of all the Proposition 7.1.2 states that the optimal cycle mean of the whole graph
needs to be found as the minimal among all components. This observation raises two prob-
lems, first, how to choose the minimum, and second, where to store the component-specific
λ values during the computation (which also has to be agreed on).

Selecting the minimal cycle mean during the computation on multiple regions is par-
ticularly problematic as the vertices of one component are not clustered together. It would
actually require first to split [97] the vector according to the region identification and then
perform segmented reduction [42], both complicated and expensive operations. Fortunately,
we have observed that often very few cycles are found and consequently only a few values
are candidates for the minimum. Thus we were able to use the atomicCAS operation as
shown in Algorithm 31.

Also the termination needs to be modified to work on two levels. The global termination
occurs when computation is finished on all strongly connected components. But it is also
important to prevent execution of kernels on components where we have already found the
OCM. Since then less threads needs to be deployed and less candidates compete in the min-
imum voting. For that purpose we have inserted a kernel that unsets the flag work for all
vertices in inactive components between lines 2 and 5 of Algorithm 29. Finally, we have opti-
mized the overall amount of work by unsetting the work flag of all single vertex components
prior to the actual OCM computation.

7.3 Experimental Evaluation

Since the prime objective of our research was to accelerate performance analysis based on
computation of optimal cycle mean, we have compared sequential and data-parallel algo-
rithms mainly on models of communicating distributed systems. The state space of all pos-
sible configuration of a given system forms a graph with cost function (representing for ex-
ample resource consumption) labeling edges of that graph. Both modeling of the system and
generation of its state space was facilitated by the enumerative model checker DiVinE [22],
extended with the capability to analyze performance of input models.

The sequential OCM Algorithms HOWARD’S and YTO were also implemented within
the DiVinE tool. Thus the evaluation of our CUDA accelerated HOWARD’S algorithms is
conducted by comparing its running time against these two sequential algorithms (which
are often considered to be the fastest [50]). The graph representation, while primarily target-
ing the vector processing architecture of GPU, is also particularly suitable for CPU due to
its cache-efficient characteristics. Hence we do not take the time of graph construction into
account for the evaluation.
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Figure 7.1: Plot for the server-free system.
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Figure 7.2: Plot for the system with a server.

All experiments were executed on a CUDA-equipped Linux workstation with an AMD
Phenom II X4 940 Processor @ 3GHz, 8 GB DDR2 @ 1066MHz RAM and NVIDIA GeForce
GTX 480 GPU with 1.5 GB of GDDR5 memory.

Our approach to performance analysis allows us to compute quantitative characteristics
of distributed systems where clients comply to a distinct sets of behavioral patterns (sce-
narios of expected behavior). Furthermore, we can state how many clients of that particular
scenario appear in the system and thus we can estimate the load of a part of the system (a
server for example) in an execution based solely on the information of how many clients of
what scenario there are.

Using this formalism we have constructed two distributed client/server system tem-
plates from which a user can generate system models by deciding on the number of client
for each scenario. In the first system, there is no server present and the actions of clients
are left to be interleaved nondeterministically. The second system contains a server and the
clients have to communicate with the server (and only one client can access the server at a
time). The OCM of such systems then represents the average system load inflicted on the
environment.

We have performed various tests on both templates to measure scalability of all the algo-
rithms and plotted the findings in two figures. In Figure 7.1 there are the results for system
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without a server and in Figure 7.2 the results for system with a server. The x axis is in log-
arithmic scale and represents the size of the graph in n ∗ m as all the OCM algorithms are
asymptotically in O(nm) or worse. The plots show very clearly that while both the YTO
and sequential HOWARD’S algorithm struggle with preserving their running times as the
graphs grow bigger, our CUDA accelerated implementation is capable of performing the
OCM computation in reasonably small time. On larger instances the GPU rarely fails to pro-
vide a five-fold speedup compared to the better of the two sequential algorithms. It is worth
noting that while the CPU algorithms were deterministic and in different runs exhibited in-
distinguishable behavior, the GPU implementation behaves nondeterministically due to the
nature of the massive parallelism. For that reason we executed every test ten times and the
result displayed in the plots is the median of all trials.

Although primarily targeting acceleration of OCM computation for performance analysis
we feel obliged to admit that on graphs from other applications was our data-parallel im-
plementation much less successful. We have conducted several experiments with US traffic
network graphs, random graphs and various graphs from the DIMACS challenge and were
never able to outperform the YTO algorithm. On these graphs the YTO algorithm performed
only a very few iterations which we attach to the fact that the OCM of these algorithms was
often very close to the minimal edge weight.

7.4 Conclusion

In this chapter, we proposed data-parallel acceleration of an OCM algorithm within several
consecutive steps. First we have evaluated all existing classes of OCM algorithms with re-
spect to their predisposition for vector processing. Subsequently, we described thoroughly
HOWARD’S algorithm which was found most appropriate and devised its data-parallel ver-
sion. Specifics of the implementation together with selected data-parallel graph primitives
were then detailed, e.g. the incorporation of the SCC decomposition and the concurrent ex-
ecution of the OCM algorithm on all strongly connected components.

The primary motivation behind the proposed data-parallel OCM algorithms was the
acceleration of performance analysis of distributed communication systems. That we have
evaluated experimentally by constructing two scalable client/server systems based on dis-
tinct scenarios of the clients finding our data-parallel algorithm capable of providing per-
formance analysis in negligible time. Although competitiveness of our CUDA accelerated
HOWARD’S algorithm on other types of graphs is questionable, we have reported a steady
five-fold speedup on performance analysis against all other algorithms.

In our future work we plan (similarly as in the case of the accepting cycle detection and
the SCC decomposition) to employ the recently proposed methods such as the warp-centric
programming [69] and the linear parallelization [91] (see Chapter 3 for more details) in order
to further improve the performance of our data-parallel algorithm for OCM problem.
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Chapter 8

Parallel Algorithms for Resolution of Boolean Equation Systems

In this chapter, we design a data-parallel algorithm for the resolution of Boolean Equation
Systems (BESs). Our goals are (i) to evaluate the scalability of our parallel approach with
respect to an increasing number of parallel processing units (PUs), and (ii) to prove its com-
petitiveness in comparison with the optimal sequential algorithm, which we implemented
analog to the description in [3].

As shown in [86] and briefly described in Section 2.3.2 model checking of alternation-
free µ-calculus [76] can be encoded by a BES, where the solution of the BES is equivalent to
the solution of the underlying model checking problem. This BES is obtained by combining
the given labeled transition system (LTS) and the inspected property. The model checking
technique based on the resolution of BES also suffers from the so-called state space explosion
problem that makes the size of the corresponding BES to be exceedingly large for real-life
industrial systems. As a result, the applicability of this technique to systems built in practice
is rather limited. Therefore a lot of research has focused on the development of methods
that can reduce the size of the resulting BES. Similarly as in the case of LTL model checking
these methods are based on partial order reduction [98, 34], symbolic representation of the
state space [90] or limiting the exploration of the state space only to relevant traces using
on-the-fly generation [104].

In contrast to this, our approach does not aim at reducing the problem size, but exploits
modern SIMD architectures in oder to speed up the model checking procedure. In the con-
text of this chapter we want to restrict ourselves to algorithms for parallel resolution of BESs.
However, in the scope of the model checking procedure the construction of BES from the
given model and the inspected formula also plays significant role. In the model checking
process the model (represented as LTS) is given implicitly (by functions to enumerate ini-
tial state and transitions emanating from a given state) or explicitly (by an adjacency list
representation of the LTS). The construction of the BES is based on traversal of the corre-
sponding LTS and on interpretation of the formula over all visited states [86]. In addition
to the BES construction we also have to transform the BES into a form suitable for parallel
processing. There exist several efficient approaches for parallel traversal of transition sys-
tems and for construction of the compact data representations in context of model checking.
See Section 5.1 and [12, 79] for more details. These methods can be easily modified to build
the efficient representation of BES and thus we concentrate only on designing data-parallel
algorithms for resolution of BESs.

Besides the parity game-based approach presented in [107], which performs a parallel
resolution of µ-formulae on shared-memory CPU-based systems, we are aware of only dis-
tributed implementations of the resolution. The aim of these distributed approaches is to in-
crease the total amount of memory, rather than to increase the performance, as the network
latency degrades the overall performance significantly. One algorithm for checking the full
µ-calculus, based on the distributed evaluation of sub-formulae, is proposed in [61]. In [30]
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and [84] two algorithms employing distributed game graphs are presented that perform a
parallel coloring of the graph in order to solve the underlying model checking problem. An-
other implementation and experimental evaluation was carried out in [66] using message
passing on a network of workstations.

Only two other approaches, focusing on the parallel resolution of BESs, are known to us.
The first one, described in [72], is tailored to distributed systems aiming at the resolution
of extremely large BES instances rather than improving runtime performance. The second
one [102] employing Gaussian Elimination as proposed in [86], turned out not to be viable
in practice, due to its exponential space complexity.

We, however, present a parallel, shared-memory approach to model checking of alterna-
tion-free µ-calculus, by employing the parallel resolution of BESs. This is explicitly targeted
at large state spaces in order to exploit the power of parallel, throughput oriented architec-
tures. We primarily aim at the well-established VLTS benchmark suite [110], which provides
40 LTSs originating from academia and industry that can be checked for deadlocks and live-
locks. For the sake of completeness we want to mention two sequential tools, namely evalu-
ator, which we used to generate the BESs from the benchmark’s LTSs and bes solve to verify
our results, both from the CADP toolset [87].

As our experiments show, we can confirm the scalability results presented in [107] for the
multi-core implementation – but on a much larger benchmark suite. Furthermore, our data-
parallel algorithm also scales up to many-core architectures and outperforms the optimal
sequential algorithm on most examples from the benchmark suite by almost an order of
magnitude.

8.1 Algorithms for Resolution of Boolean Equation Systems

There exist several approaches for resolution of BESs. They are using methods similar to
Gaussian Elimination [86], on-the-fly techniques such as chasing ones [3], which we used as
the sequential baseline in our experimental evaluation, or simply a fixpoint iteration. See [75]
for a comprehensive summary on the topic. In order to be able to conduct a fair evaluation of
our parallel implementations in terms of competitiveness, we have implemented an optimal,
sequential, CPU-based algorithm, in the style of chasing ones as proposed in [3] (further
referenced as the CHASING-ONE algorithm). The internal representation of BESs is the same
as in our CUDA accelerated implementation (see Section 8.4). The high-level pseudo-code is
listed as Algorithm 32.

As we briefly described in Section 2.3.2 each fixpoint operator of the inspected µ-formula
is represented by a so-called block in the resulting BES, containing the set of equations con-
nected to this operator. The order in which the individual blocks of the BESs have to be
processed is defined by their nesting within the formula. Since we consider only alternation-
free µ-formulae the dependencies within the blocks form a tree [76, 86]. This tree can be
easily constructed and gives us the proper order (from the leaves to the root) in which the
individual blocks have to be solved. For the sake of simplicity we assume that the outer for
loop on line 1 processes the blocks in this ordering.

The resolution of block B starts at those equations evaluating to, or being directly as-
signed a terminal value (i.e., true or false). The corresponding LHS variables that have the
terminal values are pushed into the queue (via the INIT procedure on line 2). The algorithm
further propagates this information within the block B. It repeatedly takes a variable from
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Algorithm 32: CPU CHASING-ONE algorithm

Input : BES
Output: Resolution of BES

1 foreach block B do // blocks are processed in the right order
2 INIT(queue)
3 while queue is not empty do
4 LHSVariable← queue.pop()
5 foreach equation E : LHSVariable ∈ RHS(E) do
6 if E ∈ B then
7 EVAL(E)
8 if LHS(E) is changed then
9 queue.push(LHS(E))

10 else
11 POSTPONE(E)

the queue and evaluates each equation E whose right hand side (RHS) contains this vari-
able and belongs to the block B. If the equation does not belong to this block its evaluation
is postponed until the corresponding block is processed (via the POSTPONE procedure). If
the value of the equation E has changed the corresponding LHS variable is pushed into the
queue. The resolution of block B terminates (the while loop on lines 3–11) if the queue is
empty and thus no further propagation can be done. The whole algorithm finishes if the
block corresponding to the root of the tree is resolved.

In order to efficiently identify which equations have to be evaluated in each iteration also
the backward dependencies has to be stored. Note that our data-parallel algorithm based on
the fixpoint iteration needs to store only the forward dependencies.

The space and time complexity of the CHASING-ONE algorithm is linear with respect to
the size of BES [3]. As the complexity is optimal for this problem the algorithm is well suited
to be a baseline for comparison with our data-parallel algorithm.

8.2 Parallelization Strategy

While a lot of effort has been invested into the development and optimization of sequen-
tial model checking algorithms, in order to fight the computational complexity caused by
the state space explosion, our aim was to investigate whether a parallel approach can effec-
tively scale up to massively parallel hardware architectures. In order to choose a suitable
parallelization strategy for our problem we explore structural properties and dependencies
of the BESs from the benchmark suite. The structure and data dependencies within the re-
sulting BES are closely related to the structure of the LTS it was generated from. The average
branching factor, i.e., the average number of outgoing edges per vertex, over all 40 LTSs in
the benchmark is 5.73. With respect to parallelization, this number can be interpreted as the
upper bound for potential parallelism that is given by an LTS, as in our setting information
needs to be propagated along the edges. For work set-based producer-consumer paralleliza-
tions this means that (i) for each processed work item only few new work items are expected
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Algorithm 33: CPU FIXPOINT algorithm

Input : block B of BES
Output: Resolution of block B

1 do
2 variablesChanged← false()
3 for equation E ∈ B in parallel do // equation order does not matter
4 EVAL(E)
5 if LHS(E) is changed then
6 variablesChanged← true()

7 while variablesChanged

to be added, and (ii) synchronization is needed in order to maintain consistency of the dy-
namic data structure used to store the work items.

Due to this, our approach is not based on the producer-consumer paradigm (required
by the CHASING-ONE algorithm), but on a fixpoint iteration. This promises a much higher
potential for the utilization of parallel hardware as it does not rely on dynamic data struc-
tures. In our particular setting the operations on the data structure can even be implemented
lock-free, as the fixpoint iteration is used to solve a monotonic function. Furthermore, we do
not have to populate a work set, as we propagate all possible changes during an iteration,
for the price of some computational overhead, which seems negligible considering the ever
growing number of parallel processing units.

The fixpoint iteration is suitable for fine-grained parallelism where a dedicated thread
is executed for every equation of the BESs. This approach allows us to design data-parallel
algorithm for resolution of BESs that can efficiently utilize modern SIMD architectures.

8.3 Data-Parallel Fixpoint Computation

In this section we first present the algorithmic background of our approach based on the fix-
point iteration, followed by the concepts for our multi-core and many-core implementations.

As we describe in Section 8.1 the individual blocks of the BES have to be resolved in the
order given by the tree that corresponds to the structure of the inspected formula. We start
with the blocks that form the leaves of the tree and follow a bottom-up approach. It means
that once all leaves are resolved we remove them and continue with the next level of the
tree. In the context of parallelization the shape of the tree plays an important role since all
blocks that form one (the lowest) level of the tree can be resolved in parallel (there are no
dependencies within the blocks on the same level). The efficient utilization of this property
is rather straightforward (we only need to build the tree and identify the individual levels)
and thus we further discuss only the parallel resolution of a single block.

The listing of Algorithm 33 illustrates the basic idea of the data-parallel fixpoint compu-
tation for a single block (further referenced as the FIXPOINT algorithm). It consists of two
nested loops. The purpose of the outer one (on line 1) is to identify the fixpoint of the res-
olution of the block. The inner for loop (on line 3) computes the value of the LHS for each
equation within the block according to the evaluation of its respective RHS. In the begin-
ning, all LHSs are initialized, depending on the fixpoint operator, as false in the case σ = µ
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and true in the case σ = ν. This is initial approximation derived from the Knaster-Tarski
fixpoint theorem [106], where µf =

⊔
{f i(false); i ∈ N} and νf =

d
{f i(true); i ∈ N}. The

termination of the fixpoint computation is detected on line 7 by a marker variable, indicating
whether one or more LHS variables have changed during an iteration.

The sequential time complexity of Algorithm 33 is quadratic with respect to the size of
the block since in the worst case only one LHS is changed in each iteration of the main loop
(the number of iterations is equal to the number of equations) and each iteration performs
linear amount of work. Thus Algorithm 33 provides the quadratic parallelization for the
resolution of BESs.

The core idea for parallelization of the basic fixpoint algorithm is the parallel execution
of the inner loop (on line 3) of Algorithm 33, computing the LHS value of an equation, as
the order in which equations are processed does not matter. Considering the fact that this
operation has to be executed for all equations and during each iteration step, our approach
exposes much potential for parallel computation, even within one iteration step, as we ex-
pect the number of equations to be very large. The soundness of this approach is guaranteed
by the fact that BESs represent monotonic functions, i.e., even if the computation of an LHS
depends on several other LHS variables – which in a parallel setting are potentially modified
concurrently – the updated value of each LHS is available and thus can be propagated in the
subsequent iteration.

8.3.1 Multi-Core Implementation of Data-Parallel Fixpoint Computation

Before we show how to employ the data-parallel fixpoint computation in order to accelerate
the resolution of BESs on the SIMD architectures offered by modern many-core GPUs, we
focus on multi-core CPU architecture. Our goal is to explore the scalability of multi-core CPU
implementation of Algorithm 33 and motivate the utilization of the parallel processing in the
context of the resolution of BESs.

To design an efficient multi-core implementation of data-parallel algorithms the choice of
the framework is very important, as it most significantly influences the overhead connected
to context switches. The overhead of manual thread maintenance is not negligible, since the
amount of productive work per thread invocation is very limited. Therefore, the direct use of
multi-threading environments, such as PThreads [95], is very likely to nullify the gain we ex-
pect from the parallelization itself. For this reason we chose Intel’s Cilk Plus framework [45],
which offers a work stealing-based thread pool and internally employs efficient schedul-
ing and load balancing mechanisms. The scheduling of workers is not explicit and more
lightweight than context switches using threads. It provides three simple yet powerful ex-
tensions for parallelization to the C and C++ programming languages, namely: cilk spawn,
cilk sync and cilk for.

We chose Cilk Plus framework because it is well suited for problems with fine grained
data-parallelism and irregular structure [56], as is the case in our setting. This stems from
its work stealing approach which utilizes a pool of workers, each of which is mapped to a
thread during execution. This is in contrast to having to create, manage and delete threads
manually, thereby inducing a much higher overhead.

Data structures for multi-core systems have to follow two main objectives. On one hand
they have to provide good data locality, i.e., data necessary for a computation should be
closely grouped so it can, ideally, be stored in the same cache line of a CPU. On the other
hand, unrelated data should be separated in such a way that it does not interfere with each
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BES

x0 = x1 ∧ x3

x1 = x3 ∨ x2

x2 = false
x3 = x4 ∧ x1

x4 = x1 ∨ x2

Adjacency Matrix
0 1 0 1 0
0 0 1 1 0
0 0 0 0 0
1 0 0 0 1
0 1 1 0 0



CSR Format

Ai

Ae

0 2 4 4 6 8

1 3 3 2 4 0 1 2

Figure 8.1: Generation of adjacency list representation from BES.

other in order to avoid harmful effects, such as cache thrashing. Due to these two factors
and the structure of our input data (variables ∈ equation(s) ∈ block(s) ∈ BES) we have de-
cided to use a nested data structure, where each aforementioned component is modeled by
a structured type. In this layout all data needed to evaluate one equation – the most frequent
operation in our algorithm – is stored in a single structure resembling an equation, thus, ac-
counting for good data locality. Clearly, this also provides good separation and to improve
this would require machine dependent optimization.

The key idea of our CPU-based implementation is based on the parallelization of the
inner for loop of the basic fixpoint algorithm by employing Cilk Plus’ parallel for-loop ver-
sion, cilk for. The reasons why we do not have to explicitly lock or modify the computations
are (i) the monotonicity of the Boolean function as mentioned before and (ii) the fact that
the variable indicating the change of LHS variables is set and reset outside the parallel loop
(line 2 of Algorithm 33) and modified uniformly (only set to true) inside the parallel loop
(line 6 of Algorithm 33), and thus cannot cause any inconsistency.

8.4 CUDA Accelerated Resolution of BESs

In this section we design CUDA accelerated resolution of BESs based on the proposed data-
parallel fixpoint computation. As we discussed in the previous chapters data structures used
for CUDA accelerated computation must be designed specifically for this purpose. They
must support independent thread-local data processing, and, at the same time, they must
also be compact enough to enable good data locality. This is to avoid high latency device-
memory access and to generally reduce the usage of device-memory bandwidth, which
might otherwise become a performance bottleneck [82].

A key observation is that a BES can also be interpreted as a directed graph where the LHS
variables form the vertices and the dependencies on the RHSs represent the edges. In Sec-
tion 3.1 we show how the adjacency matrix representation of directed graphs can be encoded
using two arrays (Ai and Ae) in compressed sparse row (CSR) format (see Figure 8.1). This
data structure has been demonstrated to be efficient for graph algorithms in the context of
CUDA accelerated computation [21, 9, 62]. In our case, each vertex is stored in Array Ai and
keeps the following information: an index to Array Ae (where the target vertex of the first
emanating edge is stored), its Boolean value, a flag indicating whether the value is already
computed, and the type of operator (conjunction or disjunction). Since the GPU memory is
limited we store these information into unused pointers bits (the values of the vertices are
technically pointers) reducing thus the total space requirements to 4 bytes per vertex.

The general work-flow of our CUDA accelerated fixpoint computation builds on the
same principles as CUDA accelerated graph algorithms described in Section 3.2. It combines
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Algorithm 34: GPU FIXPOINT algorithm – host code

Input : block B of BES
Output: Resolution of block B

1 CREATEREPRESENTATION(B, Ae, Ai)
2 fixPointFound← false
3 COPYTOGPU((Ae, Ai)→ (gAe, gAi))
4 while ¬fixPointFound do
5 fixPointFound← true
6 FIXPOINTKERNEL(gAe, gAi, fixPointFound)

7 COPYTOCPU(gAi → Ai)

Algorithm 35: GPU FIXPOINT kernel – device code (run in parallel for every LHS variable)

Input : gAe, gAi, fixPointFound

1 tid← blockId.x ∗ blockDim.x+ threadId.x

2 myVertex← gAi[ tid]
3 if myVertex.solved then
4 return

5 first← myVertex.index
6 last← gAi[ tid + 1].index
7 foreach index ∈ first, . . . , last do
8 targetVertex← gAe[ index]
9 mySucc← gAi[targetVertex]

10 if mySucc.value 6= myVertex.type then // type ∨ ≡ 0 and type ∧ ≡ 1
11 break

12 if myVertex.value 6= mySucc.value then
13 myVertex.solved← true
14 myVertex.value← mySucc.value
15 gAi[ tid]← myVertex
16 fixPointFound← false

the out-of-order CPU and data-parallel processing GPU and allows for very fine granularity
of parallelism [62], where a dedicated thread is executed for every equation within the block
that is processed. Note that if more than one block is processed in parallel (see Section 8.3)
then the dedicated thread is executed for every equation in all of these blocks.

The CPU host code (listed as Algorithm 34) first creates the representation of the BES suit-
able for CUDA computation and then runs the main while loop of Algorithm 33. It performs
calls to CUDA kernel that are executed on the GPU. The kernel (listed as Algorithm 35) is
responsible for evaluation of the RHSs of all equations. The kernel is invoked repeatedly as
long as vertex values change.

Each thread first loads the vertex from Array Ai (stored in GPU global memory) into a
local copy (line 2) and checks if the corresponding variable has already been solved (line 3).
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Then, it processes all immediate successors (loop on line 7), representing the RHS of the cor-
responding equation. The algorithm employs a lazy evaluation of the equations. In the case
that the value of the inspected RHS variable and equation type immediately determines the
value of the equation (i.e. the RHS is a purely disjunctive term where at least one variable is
true or the RHS is purely conjunctive and at least one variable is false), the loop is broken
(line 11). Next, the kernel checks whether the evaluation of an RHS (stored inmySucc.value)
changes the value of its LHS (line 12). In that case the value of the respective vertex is up-
dated and written back to Array Ai (line 15), and the fixpoint flag is set to false indicating
that the fixpoint is not yet reached.

We further design and implement two optimizations of the CUDA accelerated fixpoint
computation. The first one, our so-called intra-warp fixpoint iteration, which is based on
the observation that all threads within a warp have to load the required data from global
memory into local copies. All operations are performed on the local copies, which are written
back to global memory at the end of the execution of the warp. This means that updated
LHSs do not become visible to other threads until the next iteration step and thus, changes
can only be propagated one step per iteration. The intra-warp fixpoint iteration is intended
to increase the number of propagations, by performing multiple iterations on the equations
bundled in a warp and thereby propagating changes of LHSs within this warp.

The second optimization is an extension to the aforementioned intra-warp fixpoint iter-
ation. It utilizes the GPU’s shared memory, which provides a fast local memory for single
thread or warp, allowing the intermediate storage of data. We use this shared memory to
optimize the execution of the kernel by reading the LHSs contained in an RHS, from global
to shared memory. When the data of an LHS is required by the kernel the copy in shared
memory is utilized instead of the one in global memory. When the kernel returns, the copy
is written back from shared to global memory. However, the assignment on line 9 potentially
requires further LHSs, this data can either be read from global memory as before, or also be
copied to shared memory. This reduces access to global memory, but requires additional load
and store operations before and after each thread invocation.

8.5 Experimental Evaluation

As we already mentioned, we focus only on the parallelization of the algorithms for resolu-
tion of BESs. Therefore, we do not consider the construction of BES from the given model
and the inspected µ-formula in our experimental evaluation.

Two main goals of our experiments are to evaluate i) the scalability of our approach and
ii) the overall competitiveness of our approach as compared to the existing optimal sequen-
tial algorithm, that seems ill suited for parallelization. Furthermore, we evaluate structure
and density of BESs generated from the benchmark suite and, in order to provide an outlook
on the generality of our results, extend this evaluation with randomly generated BESs. Be-
sides the runtime-based comparison we provide important insights to the specifics of BESs
in the context of model checking and present heuristics that yield a significant speedup for
this particular setting. As all experiments and results are based on and obtained by the eval-
uation of our BES resolution algorithms they are well suited for direct comparison.

In order to be able to conduct a fair evaluation of our approach in terms of competi-
tiveness, we have implemented the sequential CHASING-ONE algorithm, as proposed in [3]
using the identical representation of the BES as the one used for GPU computation. Since the
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Property µ-formula
No Deadlock νX.([−]X ∧ 〈−〉true)

Livelock µX.(〈−〉X ∨ νY.(〈τ〉Y ))

Table 8.1: µ-formulae of inspected properties

(a) Example 10 (b) Example 22 (c) Example 34 (d) Rnd2

Figure 8.2: Visualization of benchmark examples as adjacency matrices.

space and time complexity of this approach is optimal it seems to be a suitable candidate for
comparison with our parallel GPU-based implementation.

Our experiments were conducted using the well established VLTS Benchmark Suite [110]
compiled within a joint project of CWI and INRIA. It consists of 40 examples from academia
and industry, given as labeled transition systems with numbers of states ranging from 289
up to 33,949,609.

The background of the benchmark examples varies greatly, thus, a variety of different
properties could be checked for individual examples. For our evaluation we use two repre-
sentative properties, namely no deadlock and livelock, that can be checked for all examples
of the benchmark suite – see Table 8.1 for their formalization. Also, the results for those
properties are provided by the authors of the benchmark, allowing a direct verification of
the correctness of the results of our implementations.

The images of some exemplary BESs, as depicted in Figure 8.2, show the significant vari-
ance in structure and density of the LTSs provided in the benchmark. The images are visu-
alizations of the adjacency matrices of the respective BESs, with the origin on the top left.

In contrast to intuition, our experiments show that this information about structure and
density does not usefully correlate with the scalability and/or runtime performance of our
approach. This is the case for the following reasons: (i) runtime depends on whether the
property, which the LTS is checked for, is fulfilled or violated, (ii) the fact that our approach
does not favor local propagation of changing variables, but globally propagates all possible
changes during an iteration and (iii) the fact that our approach performs best in those cases
that expose large numbers of concurrent changes – rather than sequential chains of changes.
Unfortunately none of these factors can be estimated and extracted from a BES’s structure.

Our experiments were carried out on different hardware platforms for (i) the CPU and
(ii) the GPU version of the implementation: (i) Two interconnected Intel XEON E7-4830 Pro-
cessors @ 2,13 GHz, each with 8 physical cores and Hyper-Threading enabled (i.e., a total of
32 logical PUs) and 64 GB DDR3 RAM @ 1333 MHz, running Windows 7 64-bit, and (ii) one
AMD Phenom II X4 940 Processor @ 3,0 GHz, 8 GB DDR2 RAM @ 1066 MHz along with (a)
one NVIDIA GeForce GTX 280 GPU with 1 GB of global memory, 16KB of shared memory
per multiprocessor, providing 240 CUDA cores and (b) one NVIDIA GeForce GTX 480 GPU
with 1.5 GB of global memory, 48KB of shared memory per multiprocessor, providing 480
CUDA cores, running Linux 64-bit.
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Algorithm
Benchmark Example Random

10 21 22 31 32 33 34 35 38 39 Rnd1 Rnd2

CPU
(i) sequential 1 19 18 573 475 737 1 704 806 901 3891 7801

(ii) parallel 2538 77 611 1564 1786 2764 279 4325 7729 8170 7966 41K

GPU (iii) simple 1336 17 68 217 113 359 51 242 256 290 350 1840

GTX 280 (iv) intra-warp 104 22 69 320 149 528 52 404 339 344 493 2594

GPU
GTX 480

(iii) simple 703 6 33 75 46 105 6 98 114 125 178 992

(iv) intra-warp 40 7 28 109 63 157 6 152 141 158 248 1391

(v) shared mem. 38 40 59 659 341 862 48 190 203 227 315 1800

Table 8.2: Runtimes for CPU-based and GPU-based implementations in milliseconds

Although the systems use different CPU types this fact does not significantly affect our
results as we compare our data-parallel FIXPOINT algorithm and the optimal CHASING-ONE

algorithm on the same system equipped with the GPUs.
Table 8.2 provides a comparison of runtimes (in milliseconds) of the following implemen-

tations: (i) the sequential CPU implementation of the optimal CHASING-ONE algorithm, (ii)
the parallel Cilk-based CPU implementation of the FIXPOINT algorithm and the GPU im-
plementations of the FIXPOINT algorithm including (iii) the GPU implementation without
any optimization, (iv) the GPU implementation with intra-warp iterations, and (v) the GPU
implementation utilizing shared memory. Note that in the case of parallel CPU implementa-
tion we list the best runtimes available among the numbers of cores that have been utilize.
Also note that in the case of the GTX 280 GPU, we omit the results for (iv), the shared mem-
ory implementation, as this GPU does not provide a sufficient amount of shared memory to
efficiently employ this optimization.

We restrict selection of benchmark examples in Table 8.2 to those for which the runtime
of the GPU implementation is sensibly measurable. Nonetheless we conducted our experi-
ments for the entire benchmark suite. The numbering of the benchmark examples refers to
their position in the table provided on the VLTS website [110], which is sorted in ascending
order relative to the number of states of the LTS, thus, Example 10 is vasy 25 25, Example 21
is vasy 166 651, Example 22 is cwi 214 684, Example 31 is vasy 2581 11442, Example 32 is
vasy 4220 13944, Example 33 is vasy 4338 15666, Example 34 is vasy 6020 19353, Example
35 is vasy 6120 11031 and Example 39 is vasy 12323 27667. In this naming scheme the first
number is the number of states divided by 1000, and the second number is the number of
transitions divided by 1000.

Furthermore, all examples in Table 8.2 are checked for the deadlock freedom property
as only eight of the 40 LTSs contain livelocks. Nonetheless, our general statements about
scalability and competitiveness have been evaluated and are valid for the entire benchmark
suite. In order to extrapolate our results and obtain more insight to the specific structure of
the benchmark’s LTSs, we extend our evaluation to randomly generated BESs. We evaluate
a total of five random examples with the number of states ranging from 1 to 10 million; Rnd1
and Rnd2 are two representatives illustrating our general observations for this class of BESs.

We omit an explicit measure of the memory consumption of our implementations as (i)
our parallel versions operate on a static data structure that is linear in the size of the input
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Figure 8.3: Scalability of multi-core implementation.

BES (ranging from approximately 90 KB up to 4.5 GB) and (ii) in the scope of this paper it is
not our aim to optimize memory efficiency, especially since all benchmark examples easily
fit our systems memory.

The results in Table 8.2 clearly show that our multi-core implementation is outperformed
significantly by the optimal sequential baseline. The reason is that the parallel FIXPOINT

algorithm has to perform quadratic amount of work in the worst case in contrast to the
optimal CHASING-ONE algorithm. Since the total number of parallel PUs is low (32 logical
cores), the computational overhead of the fixpoint iteration is too large compared to the
amount of productive work and cannot be compensated by parallel processing power. This
observation is supported by the two graphs in Figure 8.3, which show the overall scalability
of our CPU-based approach for an increasing number of parallel workers. This result is in
accordance with [107] and extends their results to our much larger benchmark suite.

The data for the two graphs in Figure 8.3 is averaged over all 40 benchmark examples,
but separately evaluated for the two properties: no deadlock (Figure 8.3a) and livelock (Fig-
ure 8.3b). It shows that the average scalability is below linear for both properties, but ob-
servable for up to eight workers, which corresponds to the number of physical cores of one
CPU in our system. It is important to remark that the shape of the two graphs, suggesting
better scalability for LTSs that have been checked for the no deadlock property, is affected by
the fact that there are 20 examples containing deadlocks, while only 8 examples contain live-
locks. In the case of the trivial examples, i.e., those that do not contain deadlocks/livelocks,
the algorithm needs to perform only one iteration, which has the significant impact on the
scalability.

The superlinear speedup in (Figure 8.3a) can be explained by the parallel execution of
workers. As the Cilk Plus framework may schedule the evaluation order of equations differ-
ently from the original one in the BES, this may lead to a faster propagation of updated LHSs,
requiring less iterations and, thus, result in the seemingly superlinear boost in performance.

The evaluation of our many-core implementation is aimed more at the competitiveness
of our approach when compared to the optimal sequential baseline than at its scalability.
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The scalability analysis of our many-core implementation is much more difficult than for the
multi-core implementation as we had to use different GPU devices that are not compara-
ble with respect to some important specifications. Not only did the number of CUDA cores
double from the GTX 280 to the GTX 480, but also the clock rate and the available amount of
memory increased significantly. For this reason we did not evaluate the scalability aspect be-
yond the scope provided in Table 8.2, which shows a significant boost in performance for the
GTX 480. We may consider the observed speedup (closing to three-fold in some instances)
to be a witness of effective scalability of the presented data-parallel algorithms.

The main limitation of the GPU parallelization is the length of the chain of propagations
of LHS values. The example 10 in the benchmark suite contains an artificially long chain
of dependencies from the initial state to the last state (see Figure 8.2(a)). For this example,
the number of iterations is equal to the number of states for the unoptimized version of
our many-core implementation, yet it is a prime candidate to benefit from the intra-warp
iteration as the changes can be propagated ideally within the equations of a warp.

However, the remaining benchmark examples do not have such an extreme structure and
therefore the intra-warp iteration, on average, does not provide any advantage, but rather
induces overhead as the comparison of runtimes in Table 8.2 shows.

Since the efficiency of our shared memory optimization is tightly coupled to the intra-
warp iteration, it can only improve the performance of the many-core implementation in
those cases in which the intra-warp iteration actually works. Due to this reason, the results
for this optimization in Table 8.2 are, not surprisingly, even worse than for the intra-warp
iteration because the transfer times from and to shared memory degrade the runtime per-
formance even further. Moreover, in order to use the shared memory, the required data (the
part of a BES corresponding to a block) has to fit the limited size of the GPUs shared mem-
ory. The size of the data that has to be stored in the shared memory is given by the block size
- a number of vertices in one block and by the number of their successors. In the case the
average out-degree (the average number of RHS variables per equations) is high, we have to
decrease the group size. This can lead to underutilization or low occupancy of the individual
multiprocessors and thus significantly reduces the performance of the algorithm.

As documented in Table 8.2 we have shown that our GPU implementations of the reso-
lution of BESs provide significant speedup for most cases of the benchmark examples and
especially for the randomly generated BESs. Surprisingly, the GPU implementation with no
optimizations yields the best results, since in most of cases the structure of the inspected
BESs does not allow to benefit from the designed optimizations.

Table 8.3 provides a comprehensive overview of the total number of iterations for those
examples of the benchmark, that have been checked for deadlocks, where the initial approx-
imation is not equal to the final solution, i.e., the total number of iterations is larger than one.
Even though the available number of PUs continuously increases with each hardware gen-
eration, it is still far from the point where a full iteration step can be computed completely
in parallel. Thus, the order of equations processing within a block has a significant influence
on the total number of iterations needed to compute the fixpoint. Yet, our evaluation yields
an interesting insight for an ideal vectorized parallelization, assuming that a fully parallel
iteration step is possible. We model this by delaying the visibility of a changed LHSs until
the next iteration step. Our evaluation shows that this limitation does not increase the to-
tal number of iteration significantly, compared to the original ordering, where equations are
evaluated in their initial order and changes of LHSs are directly visible in the following com-
putations of the iteration. This result shows that the penalty for a fully parallel computation
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Heuristic
Benchmark Example

4 5 7 10 15 16 18 19 21 22 25 27 30 31 32 33 35 37 38 39

Forward 64 19 7 25K 19 33 23 18 33 208 24 7 56 32 23 34 33 20 29 29

Vectorized 64 19 7 25K 23 37 23 19 37 213 24 7 56 37 25 37 34 20 29 29

Reverse 2 4 3 2 7 8 8 5 8 8 10 2 3 7 4 6 4 5 5 5

Random 20 9 5 25K 10 12 6 11 11 63 7 3 6 8 5 8 16 10 9 9

Table 8.3: Impact of heuristics on total number of iterations

is negligible, with respect to the total number of iterations needed to reach the fixpoint.
As the application of advanced heuristics would require costly preprocessing of the data

– causing a potentially high computational overhead – we restrict our evaluation to two
simple cases that do not introduce any overhead. The first heuristic, to carry out the evalu-
ation of equations, within a BES-block, in reversed order, was similarly proposed in [107],
and yields a significant improvement with respect to the total number of iterations needed
to compute the fixpoint. Yet, according to our observations this heuristic only works for
real world examples generated from the benchmark’s LTSs, but not for randomly generated
BESs.

The second heuristic is the randomized evaluation of equations within a BES-block. In
our observations this heuristic leads to a decrease in the number of iterations needed to
solve a BESs when compared to the original ordering. This result is of practical relevance as
our parallel implementations rely on parallelizations in which the order of RHS evaluations
is not under our control, but it is determined by the runtime environment of CUDA and Cilk
Plus. Thus, we expect an additional performance boost rather than a degradation, due to the
parallelization frameworks.

8.6 Conclusion

We implemented and evaluated a parallelization approach for BES resolution on multi- and
many-core systems, with respect to scalability and competitiveness in comparison to the op-
timal sequential algorithm. The results of our experimental evaluation confirm the scalability
results from [107] for the CPU-based implementation, yet its overall performance is not com-
petitive, compared to our sequential implementation of the optimal algorithm. The utiliza-
tion of many-core hardware yields a significant speedup, compared to multi-core systems.
Our GPU-based implementation can compete and even outperform the optimal algorithm
for most instances of the benchmark. Scalability, with respect to an increasing numbers of
PUs, has been shown in our evaluation by employing cards with 240 and 480 CUDA cores,
respectively.

As BESs are not restricted to model checking and we observed our approach to work
very well on randomly generated BESs, in our future work we intend to evaluate input BESs
from other applications, such as data-flow analysis. Furthermore, the recently proposed par-
allelization of the graph algorithms [69, 91], should be evaluated with respect to its suitability
and potential impact on our work.
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Chapter 9

Conclusion

9.1 Summary

The goal of this thesis was to design methods that can help to narrow the gap between the
complexity of systems built in practice and the complexity of systems the current model
checking tools can handle. The reason behind the gap is the so-called state space explosion
problem. This causes the graphs of reachable system configurations, that have to be sys-
tematically analyzed, to be very large for realistic systems. Generating and analyzing large
graphs calls for acceleration using parallel algorithms in order to obtain the desired level
of performance. In this thesis we aimed at designing new methods and data-parallel graph
algorithms that enable to efficiently utilize the massively parallel SIMD architectures the
modern GPUs offer in order to significantly speed up the model checking process.

First, we presented general work-flow of data-parallel graph algorithms that is shared
among all other graph procedures and that enables to efficiently employ modern SIMD ar-
chitectures. In particular we introduced a compact graph representation and heterogeneous
computation work-flow allowing for vector processing. In order to evaluate how efficiently
can modern GPUs handle the proposed way of data-parallel processing of graph algorithms,
we designed a simple model of data-parallel graph algorithms. The evaluation clearly justi-
fies our motivation to use massively parallel GPUs to accelerate the graph algorithms.

Afterwards, we discussed the main drawbacks of the proposed parallelization and sug-
gest several methods that can reduce their impact on performance of the algorithms. We also
studied recently published methods [69, 91] that have the potential to further improve the
performance of our data-parallel algorithms.

We further described a new approach for designing fast data-parallel graph algorithms.
We primarily focused on design of new efficient data-parallel algorithms for accepting cycle
detection, strongly connected component decomposition, optimal cycle detection and graph-
based resolution of boolean equation systems that form the building blocks of the model
checking procedure. However, our approach is more general and can be applied to design
of other data-parallel graph algorithms.

We kept the provably correct layout of the existing algorithms and redesigned the algo-
rithms to enable vector processing. In particular, we reformulated the recursion present in
the algorithms by means of iterative procedures, designed basic data-parallel graph primi-
tives and showed how can the algorithms be built from them. Note that, some algorithms
are inherently sequential (e.g. TARJAN’S algorithm based on depth-first search) and thus in-
appropriate for SIMD parallelization. In these cases we have to consider another algorithm
typically with worse time complexity that has a potential to outperform the optimal but
inherently sequential algorithm using parallel processing.

Another key aspect of designing data-parallel graph algorithms is a suitable graph repre-
sentation enabling the vector processing. While the raw computing power of massively par-
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allel architectures is tremendous, its utilization in model checking is, however, quite often
reduced by the costly preparation of suitable data structures and limited to small or middle-
sized instances due to space restrictions. Hence, we described new techniques that allow to
efficiently employ the data-parallel graph algorithms in the context of the model checking
procedure. In particular, we presented a new multi-core construction of the compact data
structures and new fine-grained communication-intensive parallel algorithms allowing for
multiple GPUs processing.

In order to experimentally evaluate our approach we provided CUDA implementations
of the designed data-parallel algorithms and compared them with implementations of the
best sequential counterparts. Our experiments demonstrated that the proposed GPU accel-
erated algorithms significantly outperform the best sequential counterparts and thus, in to-
tal, speed up the solution of the inspected graph problems. However, the experiments also
showed that the performance of the data-parallel graph algorithms deeply depends on the
structure of the input graphs. Especially in the case of graphs with high diameter our paral-
lelization tends to be inefficient.

Finally, we delivered the DiVinE-CUDA tool that implements the designed GPU acceler-
ated algorithms for LTL model checking. We experimentally demonstrated that our methods
result in a significant speedup of the model checking process. Moreover, the experimental
evaluation positions our DiVinE-CUDA tool as the fastest among the state-of-the-art parallel
LTL model checkers using an unbiased selection of model checking instances.

9.2 Conclusions

The main conclusions based on the research presented in this thesis are the following:

• A class of fundamental graph algorithms can be accelerated by efficient utilization of
massively parallel SIMD architectures the modern GPUs offer. Resulting data-parallel
algorithms significantly outperform the best sequential counterparts and thus in total
speed up the solution of the corresponding graph problems. However, the accelera-
tion is quite often limited by the structure of the input graphs and particularly the
parallelization described in this thesis tends to be unsuitable for the graphs with high
diameter.

• An effective and successful approach for designing fast data-parallel graph algorithms
can be based on the following steps: evaluation of all existing algorithms for the given
problem with respect to their predisposition for vector processing, selection of the most
suitable algorithm, preservation of the provably correct layout of the algorithm, refor-
mulation of the recursion present in the algorithm by means of iterative procedures,
decomposition of the algorithm into primitive graph operations and design of their
efficient data-parallel versions.

• A crucial part of designing fast data-parallel graph algorithms for model checking is
the costly preparation of suitable graph representation that enables the vector process-
ing. This preparation can be significantly accelerated by multi-core construction of the
compact data structures. However, the parallel construction may affect the ordering
of the input data representation which subsequently causes significant slowdown of
some data-parallel graph algorithms. Therefore, the algorithms resistant to slowdown
caused by improper ordering have to be preferred.
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• Effective utilization of modern GPUs is limited to small or middle-sized instances
due to space restrictions. However, the limitation can be overcome by fine-grained
communication-intensive parallel algorithms that allow to efficiently employ multiple
GPUs.

9.3 Future Work

There are several promising directions of possible future work. First, we can try to employ
two recently proposed methods in order to reduce the main limitations of our paralleliza-
tion. In particular we can extend the warp-centric programming method presented in [69]
to improve the performance of our data-parallel algorithms on highly irregular graphs. The
second method based on linear parallelization of the graph traversal [91] significantly out-
performs the standard quadratic parallelization used in our data-parallel algorithms on the
graphs with high diameter. Therefore this method has a great potential to drastically boost
the performance of our data-parallel algorithms that heavily utilize the graph traversal pro-
cedure. However, the applicability to more complicated graph algorithms is questionable
and will require further research.

Another line of work is to put significant effort in designing GPU accelerated state space
generation and adjacency list computation which can lead to additional speedup of the
model checking procedure. Edelkamp et al. have recently proposed acceleration of the state
space generation by executing complex operations on GPUs [54]. However, duplicate detec-
tion, the most crucial part of the state space generation, has not been parallelized on GPU yet.
Thus the overall speedup of the whole state space generation was moderate. We consider an
efficient massive fine-grained parallelization of the duplicate detection to be another logical
direction of research in the community of parallel and distributed model checking.

From a practical view of point the third vision for a promising future work is to consider
real industrial applications of our data-parallel algorithms. In particular, we plan to study
the performance of the data-parallel algorithms with respect to the structure of real word
graphs and to design heuristics that can further improve the applicability of the algorithms.
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